Вариант № 12348661

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип Д2 № 6191
i

В го­ро­де N живет 300000 жи­те­лей. Среди них 20% детей и под­рост­ков. Среди взрос­лых 35% не ра­бо­та­ет (пен­си­о­не­ры, сту­ден­ты, до­мо­хо­зяй­ки и т. п.). Сколь­ко взрос­лых жи­те­лей ра­бо­та­ет?


Ответ:

2
Тип Д1 № 27511
i

На диа­грам­ме по­ка­за­на сред­не­ме­сяч­ная тем­пе­ра­ту­ра в Ниж­нем Нов­го­ро­де (Горь­ком) за каж­дый месяц 1994 года. По го­ри­зон­та­ли ука­зы­ва­ют­ся ме­ся­цы, по вер­ти­ка­ли  — тем­пе­ра­ту­ра в гра­ду­сах Цель­сия. Опре­де­ли­те по диа­грам­ме наи­мень­шую сред­не­ме­сяч­ную тем­пе­ра­ту­ру в 1994 году. Ответ дайте в гра­ду­сах Цель­сия.


Ответ:

3
Тип Д4 № 250907
i

На клет­ча­той бу­ма­ге с раз­ме­ром клет­ки  дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: Пи конец ар­гу­мен­та конец дроби см \times дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: Пи конец ар­гу­мен­та конец дроби см изоб­ражён круг. Най­ди­те пло­щадь за­кра­шен­но­го сек­то­ра. Ответ дайте в квад­рат­ных сан­ти­мет­рах.


Ответ:

4
Тип 4 № 322497
i

В кар­ма­не у Коли было че­ты­ре кон­фе­ты  — «Гри­льяж», «Ла­сточ­ка», «Взлётная» и «Василёк», а также ключи от квар­ти­ры. Вы­ни­мая ключи, Коля слу­чай­но вы­ро­нил из кар­ма­на одну кон­фе­ту. Най­ди­те ве­ро­ят­ность того, что по­те­ря­лась кон­фе­та «Ла­сточ­ка».


Ответ:

5
Тип 6 № 509917
i

Най­ди­те ко­рень урав­не­ния  дробь: чис­ли­тель: 5x минус 3, зна­ме­на­тель: 4x минус 5 конец дроби =1.


Ответ:

6
Тип 1 № 27351
i

В ту­по­уголь­ном тре­уголь­ни­ке ABC AC = BC, вы­со­та AH равна 7, CH = 24. Най­ди­те  синус ACB.


Ответ:

7
Тип 8 № 323177
i

На ри­сун­ке изоб­ражён гра­фик функ­ции y=F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка   — одной из пер­во­об­раз­ных не­ко­то­рой функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , опре­делённой на ин­тер­ва­ле  левая круг­лая скоб­ка минус 3;5 пра­вая круг­лая скоб­ка . Поль­зу­ясь ри­сун­ком, опре­де­ли­те ко­ли­че­ство ре­ше­ний урав­не­ния f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =0 на от­рез­ке  левая квад­рат­ная скоб­ка минус 2;4 пра­вая квад­рат­ная скоб­ка .


Ответ:

8
Тип 3 № 76653
i

Ребра тет­ра­эд­ра равны 32. Най­ди­те пло­щадь се­че­ния, про­хо­дя­ще­го через се­ре­ди­ны че­ты­рех его ребер.


Ответ:

9

10
Тип 9 № 27997
i

Во­до­лаз­ный ко­ло­кол, со­дер­жа­щий \nu = 2 моль воз­ду­ха при дав­ле­нии p_1 = 1,5 ат­мо­сфе­ры, мед­лен­но опус­ка­ют на дно водоёма. При этом про­ис­хо­дит изо­тер­ми­че­ское сжа­тие воз­ду­ха до ко­неч­но­го дав­ле­ния p_2. Ра­бо­та, со­вер­ша­е­мая водой при сжа­тии воз­ду­ха, опре­де­ля­ет­ся вы­ра­же­ни­ем A = альфа \nu T ло­га­рифм по ос­но­ва­нию 2 дробь: чис­ли­тель: p_2 , зна­ме­на­тель: p_1 конец дроби , где  альфа =5,75  — по­сто­ян­ная, T = 300 К  — тем­пе­ра­ту­ра воз­ду­ха. Най­ди­те, какое дав­ле­ние p_2 (в атм) будет иметь воз­дух в ко­ло­ко­ле, если при сжа­тии воз­ду­ха была со­вер­ше­на ра­бо­та в 6900 Дж.


Ответ:

11
Тип 10 № 108687
i

Сме­ша­ли не­ко­то­рое ко­ли­че­ство 11-⁠про­цент­но­го рас­тво­ра не­ко­то­ро­го ве­ще­ства с таким же ко­ли­че­ством 19-⁠про­цент­но­го рас­тво­ра этого ве­ще­ства. Сколь­ко про­цен­тов со­став­ля­ет кон­цен­тра­ция по­лу­чив­ше­го­ся рас­тво­ра?


Ответ:

12

13

Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Тип 14 № 500112
i

Точка E  — се­ре­ди­на ребра CC1 куба ABCDA1B1C1D1.

а)  До­ка­жи­те, что угол между пря­мы­ми BE и AD равен углу CBE.

б)  Най­ди­те угол между пря­мы­ми BE и AD.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Тип 15 № 507817
i

Ре­ши­те не­ра­вен­ство  ло­га­рифм по ос­но­ва­нию x левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 9 левая круг­лая скоб­ка 3 в сте­пе­ни x минус 9 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка мень­ше 1.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Тип Д14 C4 № 501398
i

Сто­ро­ны AB и BC тре­уголь­ни­ка ABC равны со­от­вет­ствен­но 26 и 14,5, а его вы­со­та BD равна 10. Най­ди­те рас­сто­я­ние между цен­тра­ми окруж­но­стей, впи­сан­ных в тре­уголь­ни­ки ABD и BCD.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Тип 16 № 514029
i

Пла­ни­ру­ет­ся вы­дать льгот­ный кре­дит на целое число мил­ли­о­нов руб­лей на пять лет. В се­ре­ди­не каж­до­го года дей­ствия кре­ди­та долг заёмщика воз­рас­та­ет на 20% по срав­не­нию с на­ча­лом года. В конце 1-⁠го, 2-⁠го и 3-⁠го годов заёмщик вы­пла­чи­ва­ет толь­ко про­цен­ты по кре­ди­ту, остав­ляя долг не­из­мен­но рав­ным пер­во­на­чаль­но­му. В конце 4-⁠го и 5-⁠го годов заёмщик вы­пла­чи­ва­ет оди­на­ко­вые суммы, по­га­шая весь долг пол­но­стью. Най­ди­те наи­мень­ший раз­мер кре­ди­та, при ко­то­ром общая сумма вы­плат заёмщика пре­вы­сит 10 млн.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

18

Най­ди­те все по­ло­жи­тель­ные зна­че­ния a, при каж­дом из ко­то­рых мно­же­ство ре­ше­ний не­ра­вен­ства

1 мень­ше или равно дробь: чис­ли­тель: a плюс x в квад­ра­те плюс 2 ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка a в квад­ра­те минус 4a плюс 5 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 30 ко­рень из: на­ча­ло ар­гу­мен­та: 17x в сте­пе­ни 4 плюс 5x в квад­ра­те конец ар­гу­мен­та плюс a плюс 1 плюс ло­га­рифм по ос­но­ва­нию 5 в квад­ра­те левая круг­лая скоб­ка a в квад­ра­те минус 4a плюс 5 пра­вая круг­лая скоб­ка конец дроби

со­сто­ит из одной точки, най­ди­те это ре­ше­ние.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Тип 19 № 501071
i

За но­во­год­ним сто­лом дети ели бу­тер­бро­ды и кон­фе­ты, при­чем каж­дый что-то ел, и может быть так, что кто-то ел и то и дру­гое. Из­вест­но, что маль­чи­ков, евших бу­тер­бро­ды, было не более чем  дробь: чис­ли­тель: 5, зна­ме­на­тель: 16 конец дроби от об­ще­го числа детей, евших бу­тер­бро­ды, а маль­чи­ков, евших кон­фе­ты, было не более  дробь: чис­ли­тель: 2, зна­ме­на­тель: 5 конец дроби от об­ще­го числа детей, евших кон­фе­ты.

а)  Могло ли за сто­лом быть 13 маль­чи­ков, если до­пол­ни­тель­но из­вест­но, что всего за сто­лом было 25 детей?

б)  Какое наи­боль­шее ко­ли­че­ство маль­чи­ков могло быть за сто­лом, если до­пол­ни­тель­но из­вест­но, что всего за сто­лом было 25 детей?

в)  Какую наи­мень­шую долю могли со­став­лять де­воч­ки от об­ще­го числа детей без до­пол­ни­тель­но­го усло­вия пунк­тов а и б?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.