Пробный ЕГЭ по математике. Санкт-Петербург 2013. Вариант 1.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
В городе N живет 200 000 жителей. Среди них 15% детей и подростков. Среди взрослых жителей 45% не работает (пенсионеры, студенты, домохозяйки и т. п.). Сколько взрослых жителей работает?
Ответ:
На диаграмме показана среднемесячная температура воздуха в Симферополе за каждый месяц 1988 года. По горизонтали указываются месяцы, по вертикали — температура в градусах Цельсия. Определите по диаграмме, сколько было месяцев, когда среднемесячная температура превышала 20 градусов Цельсия.
Ответ:
Какого радиуса должна быть окружность с центром в точке P (8; 6), чтобы она касалась оси ординат?
Ответ:
В первом банке один фунт стерлингов можно купить за 47,4 рубля. Во втором банке
Ответ:
Найдите корень уравнения
Ответ:
В ромбе ABCD угол ACD равен 43°. Найдите угол ABC. Ответ дайте в градусах.
Ответ:
Найдите значение выражения при
Ответ:
На рисунке изображён график некоторой функции (два луча с общей начальной точкой). Пользуясь рисунком, вычислите
Ответ:
Шар вписан в цилиндр. Площадь поверхности шара равна 111. Найдите площадь полной поверхности цилиндра.
Ответ:
Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали ходить. Найдите вероятность того, что часовая стрелка застыла, достигнув отметки 10, но не дойдя до отметки 1 час.
Ответ:
Объем куба равен 52. Найдите объем треугольной призмы, отсекаемой от него плоскостью, проходящей через середины двух ребер, выходящих из одной вершины и параллельной третьему ребру, выходящему из этой же вершины.
Ответ:
Расстояние (в км) от наблюдателя, находящегося на небольшой высоте h километров над землeй, до наблюдаемой им линии горизонта вычисляется по формуле где
(км)
Ответ:
По двум параллельным железнодорожным путям друг навстречу другу следуют скорый и пассажирский поезда, скорости которых равны соответственно 65 км/ч и 35 км/ч. Длина пассажирского поезда равна 700 метрам. Найдите длину скорого поезда, если время, за которое он прошел мимо пассажирского поезда, равно 36 секундам. Ответ дайте в метрах.
Ответ:
Найдите точку минимума функции
Ответ:
а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
Длины ребер AB, AA1 и AD прямоугольного параллелепипеда ABCDA1B1C1D1 равны соответственно 12, 16 и 15.
а) Докажите, что объем пирамиды A1BDC1 втрое меньше объема параллелепипеда.
б) Найдите расстояние от вершины A1 до прямой BD1.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите систему неравенств
На следующей странице вам будет предложено проверить их самостоятельно.
Стороны AB и BC треугольника ABC равны соответственно 26 и 14,5, а его высота BD равна 10. Найдите расстояние между центрами окружностей, вписанных в треугольники ABD и BCD.
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения параметра a, при которых уравнение не имеет решений.
На следующей странице вам будет предложено проверить их самостоятельно.
Длины сторон прямоугольника ― натуральные числа, а его периметр равен 4000. Известно, что длина одной стороны прямоугольника равна n% от длины другой стороны, где n ― также натуральное число.
а) Какое наибольшее значение может принимать площадь прямоугольника?
б) Какое наименьшее значение может принимать площадь прямоугольника?
в) Найдите все возможные значения, которые может принимать площадь прямоугольника, если дополнительно известно, что n < 100.
На следующей странице вам будет предложено проверить их самостоятельно.