Вариант № 9836233

ЕГЭ по математике 28.03.2016. Досрочная волна, вариант 101

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип Д2 № 513612
i

Бегун про­бе­жал 400 мет­ров за 45 се­кунд. Най­ди­те сред­нюю ско­рость  бе­гу­на. Ответ  вы­ра­зи­те в ки­ло­мет­рах в час. 


Ответ:

2
Тип Д1 № 513613
i

На гра­фи­ке по­ка­за­но из­ме­не­ние тем­пе­ра­ту­ры в про­цес­се разо­гре­ва дви­га­те­ля лег­ко­во­го ав­то­мо­би­ля. На го­ри­зон­таль­ной оси от­ме­че­но время в ми­ну­тах, про­шед­шее с мо­мен­та за­пус­ка дви­га­те­ля, на вер­ти­каль­ной оси тем­пе­ра­ту­ра дви­га­те­ля в гра­ду­сах Цель­сия. Опре­де­ли­те по гра­фи­ку, до сколь­ких гра­ду­сов Цель­сия дви­га­тель на­грел­ся за пер­вые 8 минут с мо­мен­та за­пус­ка.


Ответ:

3
Тип Д4 № 513614
i

На клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1 см \times 1 см изоб­ра­же­на тра­пе­ция. Най­ди­те длину сред­ней линии этой тра­пе­ции.


Ответ:

4
Тип 5 № 513615
i

На эк­за­ме­не по гео­мет­рии школь­ник от­ве­ча­ет на один во­прос из спис­ка эк­за­ме­на­ци­он­ных во­про­сов. Ве­ро­ят­ность того, что это во­прос на тему «Впи­сан­ная окруж­ность», равна 0,25. Ве­ро­ят­ность того, что это во­прос на тему «Па­рал­ле­ло­грамм», равна 0,35. Во­про­сов, ко­то­рые од­но­вре­мен­но от­но­сят­ся к этим двум темам, нет. Най­ди­те ве­ро­ят­ность того, что на эк­за­ме­не школь­ни­ку до­ста­нет­ся во­прос по одной из этих двух тем.


Ответ:

5

Най­ди­те ко­рень урав­не­ния  ло­га­рифм по ос­но­ва­нию 7 левая круг­лая скоб­ка 13 минус 3x пра­вая круг­лая скоб­ка =2.


Ответ:

6

У тре­уголь­ни­ка со сто­ро­на­ми 12 и 15 про­ве­де­ны вы­со­ты к этим сто­ро­нам. Вы­со­та, про­ведённая к пер­вой сто­ро­не, равна 10. Най­ди­те длину вы­со­ты, про­ве­ден­ной ко вто­рой сто­ро­не.


Ответ:

7
Тип 8 № 513618
i

На ри­сун­ке изоб­ражён гра­фик y = f' левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка   — про­из­вод­ной функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка и шесть точек на оси абс­цисс: x1, x2, ..., x6. В сколь­ких из этих точек функ­ция f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка воз­рас­та­ет?


Ответ:

8

Шар впи­сан в ци­линдр объ­е­мом 42. Най­ди­те объем шара.


Ответ:

9

10

Ав­то­мо­биль раз­го­ня­ет­ся на пря­мо­ли­ней­ном участ­ке шоссе с по­сто­ян­ным уско­ре­ни­ем a км/ч 2 . Ско­рость вы­чис­ля­ет­ся по фор­му­ле  v = ко­рень из: на­ча­ло ар­гу­мен­та: 2la конец ар­гу­мен­та , где l  — прой­ден­ный ав­то­мо­би­лем путь. Най­ди­те уско­ре­ние, с ко­то­рым дол­жен дви­гать­ся ав­то­мо­биль, чтобы, про­ехав 1,1 ки­ло­мет­ра, при­об­ре­сти ско­рость 110 км/ч. Ответ вы­ра­зи­те в км/ч2 .


Ответ:

11
Тип 10 № 513622
i

Пер­вая труба за­пол­ня­ет бас­сейн за 7 часов, а две трубы вме­сте  — за 5 часов 50 минут. За сколь­ко часов за­пол­ня­ет бас­сейн одна вто­рая труба?


Ответ:

12

13
Тип 13 № 513605
i

а)  Ре­ши­те урав­не­ние 27 в сте­пе­ни x минус 5 умно­жить на 9 в сте­пе­ни x минус 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка плюс 45=0.

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка ло­га­рифм по ос­но­ва­нию 3 4; ло­га­рифм по ос­но­ва­нию 3 10 пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

14

В пра­виль­ной четырёхуголь­ной приз­ме ABCDA1B1C1D1 сто­ро­на ос­но­ва­ния AB равна 3, а бо­ко­вое ребро AA_1= ко­рень из 6 . На рёбрах AB, A1D1 и C1D1 от­ме­че­ны точки M, N и K со­от­вет­ствен­но, причём AM  =  A1N  =  C1K  =  1.

а)  Пусть L  — точка пе­ре­се­че­ния плос­ко­сти MNK с реб­ром BC. До­ка­жи­те, что MNKL  — квад­рат.

б)  Най­ди­те пло­щадь се­че­ния приз­мы плос­ко­стью MNK.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Тип 15 № 513607
i

Ре­ши­те не­ра­вен­ство  левая круг­лая скоб­ка 3x плюс 7 пра­вая круг­лая скоб­ка умно­жить на ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2x плюс 5 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те плюс 4x плюс 5 пра­вая круг­лая скоб­ка \geqslant0.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Тип 17 № 513608
i

Точка O  — центр окруж­но­сти, опи­сан­ной около ост­ро­уголь­но­го тре­уголь­ни­ка ABC, I  — центр впи­сан­ной в него окруж­но­сти, H  — точка пе­ре­се­че­ния высот. Из­вест­но, что \angle BAC=\angle OBC плюс \angle OCB.

а)  До­ка­жи­те, что точка I лежит на окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка BOC.

б)  Най­ди­те угол OIH, если \angle ABC=75 гра­ду­сов.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

17

Вклад пла­ни­ру­ет­ся от­крыть на че­ты­ре года. Пер­во­на­чаль­ный вклад со­став­ля­ет целое число мил­ли­о­нов руб­лей. В конце каж­до­го года вклад уве­ли­чи­ва­ет­ся на 10% по срав­не­нию с его раз­ме­ром в на­ча­ле года, а, кроме этого, в на­ча­ле тре­тье­го и четвёртого годов вклад еже­год­но по­пол­ня­ет­ся на 2 млн руб­лей. Най­ди­те наи­боль­ший раз­мер пер­во­на­чаль­но­го вкла­да, при ко­то­ром через че­ты­ре года вклад будет мень­ше 15 млн руб­лей.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Тип 18 № 513610
i

Най­ди­те все зна­че­ния a, при каж­дом из ко­то­рых си­сте­ма урав­не­ний

 си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: xy в квад­ра­те минус 2xy минус 4y плюс 8, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 4 конец ар­гу­мен­та конец дроби =0,y=ax конец си­сте­мы .

имеет ровно два раз­лич­ных ре­ше­ния.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Тип 19 № 513611
i

Мно­же­ство чисел назовём хо­ро­шим, если его можно раз­бить на два под­мно­же­ства с оди­на­ко­вой сум­мой чисел.

а)  Яв­ля­ет­ся ли мно­же­ство {100; 101; 102; ...; 199} хо­ро­шим?

б)  Яв­ля­ет­ся ли мно­же­ство {2; 4; 8; ...; 2200} хо­ро­шим?

в)  Сколь­ко хо­ро­ших четырёхэле­мент­ных под­мно­жеств у мно­же­ства {3; 4; 5; 6; 8; 10; 12}?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.