Вариант № 34184542

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип Д2 № 77350
i

В доме, в ко­то­ром живет Петя, один подъ­езд. На каж­дом этаже на­хо­дит­ся по 6 квар­тир. Петя живет в квар­ти­ре № 50. На каком этаже живет Петя?


Ответ:

2
Тип Д1 № 500242
i

На диа­грам­ме по­ка­за­на сред­не­ме­сяч­ная тем­пе­ра­ту­ра воз­ду­ха (в гра­ду­сах Цель­сия) в Яро­слав­ле по ре­зуль­та­там мно­го­лет­них на­блю­де­ний. Най­ди­те по диа­грам­ме ко­ли­че­ство ме­ся­цев, когда сред­няя тем­пе­ра­ту­ра в Яро­слав­ле была от­ри­ца­тель­ной.


Ответ:

3
Тип Д4 № 27801
i

Най­ди­те ги­по­те­ну­зу пря­мо­уголь­но­го тре­уголь­ни­ка, если сто­ро­ны квад­рат­ных кле­ток равны 1.


Ответ:

4
Тип 4 № 320194
i

В груп­пе ту­ри­стов 30 че­ло­век. Их вер­толётом в не­сколь­ко приёмов за­бра­сы­ва­ют в труд­но­до­ступ­ный район по 6 че­ло­век за рейс. По­ря­док, в ко­то­ром вер­толёт пе­ре­во­зит ту­ри­стов, слу­ча­ен. Най­ди­те ве­ро­ят­ность того, что ту­рист П. по­ле­тит пер­вым рей­сом вер­толёта.


Ответ:

5

Най­ди­те ко­рень урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 3x минус 8 конец ар­гу­мен­та =5.


Ответ:

6

Сто­ро­на пра­виль­но­го тре­уголь­ни­ка равна  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та . Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в этот тре­уголь­ник.


Ответ:

7
Тип 8 № 317540
i

На ри­сун­ке изоб­ражён гра­фик функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка и две­на­дцать точек на оси абс­цисс: x_1, x_2, x_3, \dots, x_12. В сколь­ких из этих точек про­из­вод­ная функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка от­ри­ца­тель­на?


Ответ:

8
Тип 3 № 27162
i

Объем пер­во­го шара в 27 раз боль­ше объ­е­ма вто­ро­го. Во сколь­ко раз пло­щадь по­верх­но­сти пер­во­го шара боль­ше пло­ща­ди по­верх­но­сти вто­ро­го?


Ответ:

9
Тип 5 № 509086
i

Маша кол­лек­ци­о­ни­ру­ет прин­цесс из Кин­дер-сюр­при­зов. Всего в кол­лек­ции 10 раз­ных прин­цесс, и они рав­но­мер­но рас­пре­де­ле­ны, то есть в каж­дом оче­ред­ном Кин­дер-сюр­при­зе может с рав­ны­ми ве­ро­ят­но­стя­ми ока­зать­ся любая из 10 прин­цесс.

У Маши уже есть шесть раз­ных прин­цесс из кол­лек­ции. Ка­ко­ва ве­ро­ят­ность того, что для по­лу­че­ния сле­ду­ю­щей прин­цес­сы Маше придётся ку­пить ещё 1 или 2 шо­ко­лад­ных яйца?


Ответ:

10
Тип 9 № 27999
i

Де­та­лью не­ко­то­ро­го при­бо­ра яв­ля­ет­ся квад­рат­ная рамка с на­мо­тан­ным на неe про­во­дом, через ко­то­рый про­пу­щен по­сто­ян­ный ток. Рамка по­ме­ще­на в од­но­род­ное маг­нит­ное поле так, что она может вра­щать­ся. Мо­мент силы Ам­пе­ра, стре­мя­щей­ся по­вер­нуть рамку (в Н умно­жить на м), опре­де­ля­ет­ся фор­му­лой M = NIBl в квад­ра­те синус альфа , где I = 2A  — сила тока в рамке, B = 3 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка Тл  — зна­че­ние ин­дук­ции маг­нит­но­го поля, l =0,5 м  — раз­мер рамки, N = 1000  — число вит­ков про­во­да в рамке,  альфа   — ост­рый угол между пер­пен­ди­ку­ля­ром к рамке и век­то­ром ин­дук­ции. При каком наи­мень­шем зна­че­нии угла  альфа (в гра­ду­сах) рамка может на­чать вра­щать­ся, если для этого нужно, чтобы рас­кру­чи­ва­ю­щий мо­мент M был не мень­ше 0,75 Н умно­жить на м?


Ответ:

11
Тип 10 № 26587
i

Мо­тор­ная лодка в 10:00 вышла из пунк­та А в пункт В, рас­по­ло­жен­ный в 30 км от А. Про­быв в пунк­те В 2 часа 30 минут, лодка от­пра­ви­лась назад и вер­ну­лась в пункт А в 18:00 того же дня. Опре­де­ли­те (в км/ч) соб­ствен­ную ско­рость лодки, если из­вест­но, что ско­рость те­че­ния реки 1 км/⁠ч.


Ответ:

12

Най­ди­те точку ми­ни­му­ма функ­ции y=x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус 3x плюс 1.


Ответ:

13
Тип Д8 C1 № 484543
i

Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: 9 минус x конец ар­гу­мен­та в квад­ра­те ко­си­нус x=0.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Тип 14 № 507576
i

а)  Дан пря­мо­уголь­ный па­рал­ле­ле­пи­пед ABCDA1B1C1D1. До­ка­жи­те, что все грани тет­ра­эд­ра ACB1D1  — рав­ные тре­уголь­ни­ки (тет­ра­эдр, об­ла­да­ю­щий таким свой­ством, на­зы­ва­ют рав­но­гран­ным).

б)  В пря­мо­уголь­ном па­рал­ле­ле­пи­пе­де ABCDA1B1C1D1 най­ди­те угол между плос­ко­стью A1BC и пря­мой BC1, если AA1  =  8, AB  =  6, BC  =  15.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Тип 15 № 514521
i

Ре­ши­те не­ра­вен­ство 2 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те минус 8x плюс 17 пра­вая круг­лая скоб­ка в квад­ра­те пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 3x в квад­ра­те плюс 5 пра­вая круг­лая скоб­ка мень­ше или равно ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x в квад­ра­те минус 8x плюс 17 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 2x в квад­ра­те плюс 7x плюс 5 пра­вая круг­лая скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Тип 17 № 514633
i

На про­дол­же­нии сто­ро­ны АС за вер­ши­ну А тре­уголь­ни­ка АВС от­ме­че­на точка D так, что AD  =  AB. Пря­мая, про­хо­дя­щая через точку А, па­рал­лель­но BD, пе­ре­се­ка­ет сто­ро­ну ВС в точке M.

а)  До­ка­жи­те, что AM  — бис­сек­три­са тре­уголь­ни­ка АВС.

б)  Найти SAMBD, если AC  =  30, BC  =  18 и AB  =  24.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Тип 16 № 511894
i

В бас­сейн про­ве­де­ны три трубы. Пер­вая труба на­ли­ва­ет 30 м3 воды в час. Вто­рая труба на­ли­ва­ет в час на 3V м3 мень­ше, чем пер­вая (0 < V < 10), а тре­тья труба на­ли­ва­ет в час на 10V м3 боль­ше пер­вой. Сна­ча­ла пер­вая и вто­рая трубы, ра­бо­тая вме­сте, на­ли­ва­ют 30% бас­сей­на, а затем все три трубы, ра­бо­тая вме­сте, на­ли­ва­ют остав­ши­е­ся 0,7 бас­сей­на. При каком зна­че­нии V бас­сейн быст­рее всего на­пол­нит­ся ука­зан­ным спо­со­бом?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Тип 18 № 484627
i

Най­ди­те все зна­че­ния а, при каж­дом из ко­то­рых си­сте­ма

 си­сте­ма вы­ра­же­ний  новая стро­ка дробь: чис­ли­тель: x плюс ax плюс a, зна­ме­на­тель: x минус 2a минус 2 конец дроби боль­ше или равно 0,  новая стро­ка x плюс ax боль­ше 8  конец си­сте­мы .

не имеет ре­ше­ний.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Тип 19 № 506067
i

На шести елках сидят шесть сорок  — по одной на каж­дой елке. Елки рас­тут в ряд с ин­тер­ва­лом в 10 м. Если какая-⁠то со­ро­ка пе­ре­ле­та­ет с одной елки на дру­гую, то какая-⁠ни­будь дру­гая со­ро­ка обя­за­тель­но пе­ре­ле­та­ет на столь­ко же мет­ров, но в об­рат­ном на­прав­ле­нии.

а)  Могут ли все со­ро­ки со­брать­ся на одной елке?

б)  А если сорок и елок семь?

в)  А если елки стоят по кругу?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.