ЕГЭ по математике 06.06.2016. Основная волна. Вариант 509 (C часть).
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
В правильной четырёхугольной пирамиде SABCD боковое ребро SA равно а высота SH пирамиды равна
Точки M и N — середины рёбер CD и AB, соответственно, а NT — высота пирамиды с вершиной N и основанием SCD.
а) Докажите, что точка T является серединой SM.
б) Найдите расстояние между NT и SC.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
Квадрат ABCD вписан в окружность. Хорда CE пересекает его диагональ BD в точке K.
а) Докажите, что
б) Найдите отношение CE : KE, если
На следующей странице вам будет предложено проверить их самостоятельно.
В июле 2016 года планируется взять кредит в банке на пять лет в размере S тыс рублей. Условия его возврата таковы:
− каждый январь долг возрастает на 25% по сравнению с концом предыдущего года;
− с февраля по июнь каждого года необходимо выплатить часть долга;
− в июле 2017,2018 и 2019 долг остаётся равным S тыс. рублей;
− выплаты в 2020 и 2021 годах равны по 625 тыс. рублей;
− к июлю 2021 долг будет выплачен полностью.
Найдите общую сумму выплат за пять лет.
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения а, при каждом из которых система уравнений
имеет ровно три различных решения.
На следующей странице вам будет предложено проверить их самостоятельно.
Последовательность состоит из натуральных чисел, причём каждый член последовательности (кроме первого и последнего) больше среднего арифметического соседних (стоящих рядом с ним) членов. а) Приведите пример такой последовательности, состоящей из пяти членов, сумма которых равна 60. б) Может ли такая последовательность состоять из пяти членов и содержать два одинаковых числа? в) Какое наименьшее значение может принимать сумма членов такой последовательности при n = 8?
На следующей странице вам будет предложено проверить их самостоятельно.