Вариант № 28142289

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип Д2 № 323512
i

По та­риф­но­му плану «Про­сто как день» ком­па­ния со­то­вой связи каж­дый вечер сни­ма­ет со счёта або­нен­та 16 руб­лей. Если на счету оста­лось мень­ше 16 руб­лей, то на сле­ду­ю­щее утро номер бло­ки­ру­ют до по­пол­не­ния счёта. Се­год­ня утром у Лизы на счету было 700 руб­лей. Сколь­ко дней (вклю­чая се­го­дняш­ний) она смо­жет поль­зо­вать­ся те­ле­фо­ном, не по­пол­няя счёт?


Ответ:

2

На диа­грам­ме по­ка­за­на сред­не­ме­сяч­ная тем­пе­ра­ту­ра воз­ду­ха в Ека­те­рин­бур­ге (Сверд­лов­ске) за каж­дый месяц 1973 года. По го­ри­зон­та­ли ука­зы­ва­ют­ся ме­ся­цы, по вер­ти­ка­ли  — тем­пе­ра­ту­ра в гра­ду­сах Цель­сия. Опре­де­ли­те по диа­грам­ме наи­боль­шую сред­не­ме­сяч­ную тем­пе­ра­ту­ру во вто­рой по­ло­ви­не 1973 года. Ответ дайте в гра­ду­сах Цель­сия.


Ответ:

3
Тип Д4 № 315123
i

На клет­ча­той бу­ма­ге изоб­ра­же­ны два круга. Пло­щадь внут­рен­не­го круга равна 1. Най­ди­те пло­щадь за­штри­хо­ван­ной фи­гу­ры.


Ответ:

4
Тип 5 № 320207
i

Всем па­ци­ен­там с по­до­зре­ни­ем на ге­па­тит де­ла­ют ана­лиз крови. Если ана­лиз вы­яв­ля­ет ге­па­тит, то ре­зуль­тат ана­ли­за на­зы­ва­ет­ся по­ло­жи­тель­ным. У боль­ных ге­па­ти­том па­ци­ен­тов ана­лиз даёт по­ло­жи­тель­ный ре­зуль­тат с ве­ро­ят­но­стью 0,9. Если па­ци­ент не болен ге­па­ти­том, то ана­лиз может дать лож­ный по­ло­жи­тель­ный ре­зуль­тат с ве­ро­ят­но­стью 0,01. Из­вест­но, что 5% па­ци­ен­тов, по­сту­па­ю­щих с по­до­зре­ни­ем на ге­па­тит, дей­стви­тель­но боль­ны ге­па­ти­том. Най­ди­те ве­ро­ят­ность того, что ре­зуль­тат ана­ли­за у па­ци­ен­та, по­сту­пив­ше­го в кли­ни­ку с по­до­зре­ни­ем на ге­па­тит, будет по­ло­жи­тель­ным.


Ответ:

5
Тип 6 № 282849
i

Най­ди­те ко­рень урав­не­ния  левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в кубе =8.


Ответ:

6
Тип 1 № 27766
i

Най­ди­те ост­рый угол между бис­сек­три­са­ми ост­рых углов пря­мо­уголь­но­го тре­уголь­ни­ка. Ответ дайте в гра­ду­сах.


Ответ:

7

На ри­сун­ке изоб­ражён гра­фик диф­фе­рен­ци­ру­е­мой функ­ции y  =  f(x). На оси абс­цисс от­ме­че­ны де­вять точек: x1, x2, x3, ..., x9. Среди этих точек най­ди­те все точки, в ко­то­рых про­из­вод­ная функ­ции f(x) от­ри­ца­тель­на. В от­ве­те ука­жи­те ко­ли­че­ство най­ден­ных точек.


Ответ:

8
Тип 3 № 27112
i

От тре­уголь­ной приз­мы, объем ко­то­рой равен 6, от­се­че­на тре­уголь­ная пи­ра­ми­да плос­ко­стью, про­хо­дя­щей через сто­ро­ну од­но­го ос­но­ва­ния и про­ти­во­по­лож­ную вер­ши­ну дру­го­го ос­но­ва­ния. Най­ди­те объем остав­шей­ся части.


Ответ:

9
Тип 7 № 26744
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: целая часть: 3, дроб­ная часть: чис­ли­тель: 6, зна­ме­на­тель: 7 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: целая часть: 1, дроб­ная часть: чис­ли­тель: 5, зна­ме­на­тель: 7 конец ар­гу­мен­та пра­вая круг­лая скоб­ка : ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 3, зна­ме­на­тель: 28 конец дроби конец ар­гу­мен­та .


Ответ:

10
Тип 9 № 27957
i

Вы­со­та над землeй под­бро­шен­но­го вверх мяча ме­ня­ет­ся по за­ко­ну h левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка =1,6 плюс 8t минус 5t в квад­ра­те , где h  — вы­со­та в мет­рах, t  — время в се­кун­дах, про­шед­шее с мо­мен­та брос­ка. Сколь­ко се­кунд мяч будет на­хо­дить­ся на вы­со­те не менее трeх мет­ров?


Ответ:

11
Тип 10 № 26596
i

Двое ра­бо­чих, ра­бо­тая вме­сте, могут вы­пол­нить ра­бо­ту за 12 дней. За сколь­ко дней, ра­бо­тая от­дель­но, вы­пол­нит эту ра­бо­ту пер­вый ра­бо­чий, если он за два дня вы­пол­ня­ет такую же часть ра­бо­ты, какую вто­рой  — за три дня?


Ответ:

12

13
Тип Д8 C1 № 507430
i

Ре­ши­те урав­не­ние:  дробь: чис­ли­тель: 2 синус в квад­ра­те x минус 5 синус x минус 3, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x плюс дробь: чис­ли­тель: зна­ме­на­тель: p конец дроби i6 конец ар­гу­мен­та конец дроби =0.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

14

На рёбрах CD и BB1 куба ABCDA1B1C1D1 с реб­ром 12 от­ме­че­ны точки Р и Q со­от­вет­ствен­но, причём DP  =  4, а B1Q  =  3. Плос­кость APQ пе­ре­се­ка­ет ребро CC1 в точке М.

а)  До­ка­жи­те, что точка М яв­ля­ет­ся се­ре­ди­ной ребра CC1.

б)  Най­ди­те рас­сто­я­ние от точки С до плос­ко­сти APQ.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Тип 15 № 507491
i

Ре­ши­те не­ра­вен­ство:  дробь: чис­ли­тель: x в квад­ра­те минус 6x плюс 8, зна­ме­на­тель: x минус 1 конец дроби минус дробь: чис­ли­тель: x минус 4, зна­ме­на­тель: x в квад­ра­те минус 3x плюс 2 конец дроби мень­ше или равно 0.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Тип 17 № 514124
i

Диа­го­наль AC раз­би­ва­ет тра­пе­цию ABCD с ос­но­ва­ни­я­ми AD и BC, из ко­то­рых AD боль­шее, на два по­доб­ных тре­уголь­ни­ка.

а)  До­ка­жи­те, что ∠ABC = ∠ACD.

б)  Най­ди­те от­ре­зок, со­еди­ня­ю­щий се­ре­ди­ны ос­но­ва­ний тра­пе­ции, если из­вест­но, что BC  =  18, AD  =  50 и  ко­си­нус \angle CAD= дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Тип 16 № 508582
i

Банк пла­ни­ру­ет вло­жить на 1 год 30% име­ю­щих­ся у него средств кли­ен­тов в акции зо­ло­то­до­бы­ва­ю­ще­го ком­би­на­та, а осталь­ные 70%  — в стро­и­тель­ство тор­го­во­го ком­плек­са. В за­ви­си­мо­сти от об­сто­я­тельств пер­вый про­ект может при­не­сти банку при­быль в раз­ме­ре от 32% до 37% го­до­вых, а вто­рой про­ект  — от 22 до 27% го­до­вых. В конце года банк обя­зан вер­нуть день­ги кли­ен­там и вы­пла­тить им про­цен­ты по за­ра­нее уста­нов­лен­ной став­ке, уро­вень ко­то­рой дол­жен на­хо­дить­ся в пре­де­лах от 10% до 20% го­до­вых. Опре­де­ли­те, какую наи­мень­шую и наи­боль­шую чи­стую при­быль в про­цен­тах го­до­вых от сум­мар­ных вло­же­ний в по­куп­ку акций и стро­и­тель­ство тор­го­во­го ком­плек­са может при этом по­лу­чить банк.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Тип 18 № 484633
i

При каких зна­че­ни­ях па­ра­мет­ров а и b си­сте­ма  си­сте­ма вы­ра­же­ний  новая стро­ка 8x плюс левая круг­лая скоб­ка a в квад­ра­те плюс ab плюс b в квад­ра­те пра­вая круг­лая скоб­ка y=4,  новая стро­ка левая круг­лая скоб­ка a минус b пра­вая круг­лая скоб­ка x плюс 26y=2 конец си­сте­мы . имеет бес­ко­неч­но много ре­ше­ний?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Тип 19 № 501694
i

За­ду­ма­но не­сколь­ко (не обя­за­тель­но раз­лич­ных) на­ту­раль­ных чисел. Эти числа и их все воз­мож­ные суммы (по 2, по 3 и т. д.) вы­пи­сы­ва­ют на доску в по­ряд­ке не­убы­ва­ния. Если какое-⁠то число n, вы­пи­сан­ное на доску, по­вто­ря­ет­ся не­сколь­ко раз, то на доске остав­ля­ет­ся одно такое число n, а осталь­ные числа, рав­ные n, сти­ра­ют­ся. На­при­мер, если за­ду­ма­ны числа 1, 3, 3, 4, то на доске будет за­пи­сан набор 1, 3, 4, 5, 6, 7, 8, 10, 11.

а)  При­ве­ди­те при­мер за­ду­ман­ных чисел, для ко­то­рых на доске будет за­пи­сан набор 2, 4, 6, 8, 10.

б)  Су­ще­ству­ет ли при­мер таких за­ду­ман­ных чисел, для ко­то­рых на доске будет за­пи­сан набор 1, 3, 4, 5, 6, 8, 10, 11, 12, 13, 15, 17, 18, 19, 20, 22?

в)  При­ве­ди­те все при­ме­ры за­ду­ман­ных чисел, для ко­то­рых на доске будет за­пи­сан набор 7, 8, 10, 15, 16, 17, 18, 23, 24, 25, 26, 31, 33, 34, 41.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.