№№ заданий Пояснения Ответы Ключ Критерии Источник Раздел Раздел кодификатора ФИПИ Справка
PDF-версия PDF-версия (горизонтальная) PDF-версия (крупный шрифт) Версия для копирования в MS Word
Вариант № 17852146

Досрочный ЕГЭ по математике (Центр) 31.03.2018

1.

Диагональ экрана телевизора равна 64 дюймам. Выразите диагональ экрана в сантиметрах, если в одном дюйме 2,54 см. Результат округлите до целого числа сантиметров.

2.

На рисунке показано изменение температуры воздуха на протяжении трех суток. По горизонтали указывается дата и время суток, по вертикали — значение температуры в градусах Цельсия. Определите по рисунку наибольшую температуру воздуха 22 января. Ответ дайте в градусах Цельсия.

3.

Найдите гипотенузу прямоугольного треугольника, если стороны квадратных клеток равны 1.

4.

Конкурс исполнителей проводится в 5 дней. Всего заявлено 80 выступлений — по одному от каждой страны, участвующей в конкурсе. Исполнитель из России участвует в конкурсе. В первый день запланировано 8 выступлений, остальные распределены поровну между оставшимися днями. Порядок выступлений определяется жеребьёвкой. Какова вероятность, что выступление исполнителя из России состоится в третий день конкурса?

5.

Найдите корень уравнения

6.

Стороны параллелограмма равны 9 и 15. Высота, опущенная на первую сторону, равна 10. Найдите высоту, опущенную на вторую сторону параллелограмма.

7.

На рисунке изображен график функции и отмечены точки −2, −1, 1, 4. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.

8.

В цилиндрический сосуд налили 1200 см3 воды. Уровень воды при этом достигает высоты 12 см. В жидкость полностью погрузили деталь. При этом уровень жидкости в сосуде поднялся на 10 см. Чему равен объем детали? Ответ выразите в см3.

9.

Найдите значение выражения

10.

Водолазный колокол, содержащий моля воздуха при давлении атмосферы, медленно опускают на дно водоёма. При этом происходит изотермическое сжатие воздуха до конечного давления Работа, совершаемая водой при сжатии воздуха, определяется выражением , где — постоянная, К — температура воздуха. Найдите, какое давление (в атм) будет иметь воздух в колоколе, если при сжатии воздуха была совершена работа в 29100 Дж.

11.

Теплоход проходит по течению реки до пункта назначения 255 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 1 км/ч, стоянка длится 2 часа, а в пункт отправления теплоход возвращается через 34 часа после отплытия из него. Ответ дайте в км/ч.

12.

Найдите наибольшее значение функции на отрезке

13.

а) Решите уравнение

 

б) Найдите его корни на промежутке

14.

Дана правильная четырехугольная призма ABCDA1B1C1D1. На ребре AA1 отмечена точка K так, что AK : KA1 = 1 : 2. Плоскость проходит через точки B и K параллельно прямой AC. Эта плоскость пересекает ребро DD1 в точке M.

а) Докажите, что

б) Найдите площадь сечения, если

15.

Решите неравенство

16.

В треугольнике ABC угол ABC тупой, H — точка пересечения продолжений высот, угол AHC равен 60°.

а) Докажите, что угол ABC равен 120°.

б) Найдите BH, если

17.

В июле 2018 года планируется взять кредит в банке. Условия его возврата таковы:

— каждый январь долг увеличивается на 20% по сравнению с концом предыдущего года;

— с февраля по июнь каждого года необходимо выплатить одним платежом часть долга.

Сколько рублей необходимо взять в банке, если известно, что кредит будет полностью погашен четырьмя равными платежами, и банку будет выплачено 311 040 рублей?

18.

Найдите все значения параметра a, при каждом из которых система уравнений

имеет ровно два различных решения.

19.

На доске написано n чисел ai (i = 1, 2, …, n). Каждое из них не меньше 50 и не больше 150. Каждое из этих чисел уменьшают на ri%. При этом либо ri = 2%, либо число ai уменьшается на 2, то есть становится равным ai − 2. (Какие-то числа уменьшились на число 2, а какие-то — на 2 процента).

а) Может ли среднее арифметическое чисел r1, r2, …, rn быть равным 5?

б) Могло ли так получиться, что среднее арифметическое чисел r1, r2, …, rn больше 2, при этом сумма чисел a1a2 … an уменьшилась более чем на 2n?

в) Пусть всего чисел 30, а после выполнения описанной операции их сумма уменьшилась на 40. Найдите наибольшее возможное значение среднего арифметического чисел r1, r2, …, rn.