Вариант № 16550516

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
Вариант составлен по шаблону 16550516.
1
Тип Д2 № 521541
i

При опла­те услуг через пла­теж­ный тер­ми­нал взи­ма­ет­ся ко­мис­сия 5%. Тер­ми­нал при­ни­ма­ет суммы крат­ные 10 руб­лям. Аня хочет по­ло­жить на счет сво­е­го мо­биль­но­го те­ле­фо­на не мень­ше 400 руб­лей. Какую ми­ни­маль­ную сумму она долж­на по­ло­жить в при­ем­ное устрой­ство дан­но­го тер­ми­на­ла?


Ответ:

2
Тип 5 № 639910
i

При из­го­тов­ле­нии под­шип­ни­ков диа­мет­ром 75 мм ве­ро­ят­ность того, что диа­метр будет от­ли­чать­ся от за­дан­но­го не боль­ше чем на 0,01 мм, равна 0,961. Най­ди­те ве­ро­ят­ность того, что слу­чай­ный под­шип­ник будет иметь диа­метр мень­ше чем 74,99 мм или боль­ше чем 75,01 мм.


Ответ:

3
Тип Д4 № 503347
i

На клет­ча­той бу­ма­ге на­ри­со­ван круг пло­ща­дью 2,8. Най­ди­те пло­щадь за­кра­шен­но­го сек­то­ра.


Ответ:

4
Тип 4 № 502989
i

На чем­пи­о­на­те по прыж­кам в воду вы­сту­па­ют 30 спортс­ме­нов, среди них 4 пры­гу­на из Гол­лан­дии и 6 пры­гу­нов из Па­раг­вая. По­ря­док вы­ступ­ле­ний опре­де­ля­ет­ся же­ребьёвкой. Най­ди­те ве­ро­ят­ность того, что ше­стым будет вы­сту­пать пры­гун из Па­раг­вая.


Ответ:

5
Тип 6 № 26663
i

Най­ди­те ко­рень урав­не­ния:  минус дробь: чис­ли­тель: 2, зна­ме­на­тель: 9 конец дроби x= целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 9 .


Ответ:

6
Тип 1 № 27633
i

Най­ди­те пло­щадь пря­мо­уголь­ной тра­пе­ции, ос­но­ва­ния ко­то­рой равны 6 и 2, боль­шая бо­ко­вая сто­ро­на со­став­ля­ет с ос­но­ва­ни­ем угол 45°.


Ответ:

7
Тип 8 № 323077
i

На ри­сун­ке изоб­ражён гра­фик функ­ции y  =  F(x)  — одной из пер­во­об­раз­ных функ­ции f(x), опре­делённой на ин­тер­ва­ле (−3; 5). Най­ди­те ко­ли­че­ство ре­ше­ний урав­не­ния f(x)  =  0 на от­рез­ке [−2; 4].


Ответ:

8
Тип 3 № 27194
i

Най­ди­те объем мно­го­гран­ни­ка, изоб­ра­жен­но­го на ри­сун­ке (все дву­гран­ные углы пря­мые).


Ответ:

9
Тип 7 № 660914
i

Най­ди­те зна­че­ние вы­ра­же­ния 3 ко­рень из 3 минус 6 ко­рень из 3 синус в квад­ра­те дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 12 конец дроби .


Ответ:

10
Тип 9 № 28697
i

Ско­рость ко­леб­лю­ще­го­ся на пру­жи­не груза ме­ня­ет­ся по за­ко­ну  v левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка = 7 синус дробь: чис­ли­тель: Пи t, зна­ме­на­тель: 4 конец дроби  (см/с), где t  — время в се­кун­дах. Какую долю вре­ме­ни из пер­вых двух се­кунд ско­рость дви­же­ния пре­вы­ша­ла 3,5 см/с? Ответ вы­ра­зи­те де­ся­тич­ной дро­бью, если нужно, округ­ли­те до сотых.


Ответ:

11
Тип 10 № 112207
i

Биз­не­смен Пе­че­нов по­лу­чил в 2000 году при­быль в раз­ме­ре 1 000 000 руб­лей. Каж­дый сле­ду­ю­щий год его при­быль уве­ли­чи­ва­лась на 16% по срав­не­нию с преды­ду­щим годом. Сколь­ко руб­лей за­ра­бо­тал Пе­че­нов за 2002 год?


Ответ:

12

13

а)  Ре­ши­те урав­не­ние  ло­га­рифм по ос­но­ва­нию 7 левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 49 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в сте­пе­ни 4 пра­вая круг­лая скоб­ка .

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка ло­га­рифм по ос­но­ва­нию целая часть: 6, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 7 ; ло­га­рифм по ос­но­ва­нию 6 35 пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Тип 14 № 518912
i

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC с ос­но­ва­ни­ем ABC бо­ко­вое ребро равно 7, а сто­ро­на ос­но­ва­ния равна 6. На про­дол­же­нии ребра SA за точку A от­ме­че­на точка P, а на про­дол­же­нии ребра SB за точку B  — точка Q, причём AP  =  BQ  =  SA.

а)  До­ка­жи­те, что пря­мые PQ и SC пер­пен­ди­ку­ляр­ны друг другу.

б)  Най­ди­те угол между плос­ко­стя­ми ABC и CPQ.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Тип 15 № 508407
i

Ре­ши­те не­ра­вен­ство: 25x в квад­ра­те минус 4\left| 8 минус . 5x | мень­ше 80x минус 64.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Тип 17 № 628245
i

Дан тре­уголь­ник АВС. Точка О  — центр впи­сан­ной в него окруж­но­сти. На сто­ро­не ВС от­ме­че­на такая точка M, что СM  =  АС и ВM  =  АО.

а)  До­ка­жи­те, что пря­мые АВ и ОM па­рал­лель­ны.

б)  Най­ди­те пло­щадь четырёхуголь­ни­ка АВMО, если угол AСB пря­мой и АС  =  4.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Тип 16 № 549035
i

В июле 2026 года пла­ни­ру­ет­ся взять кре­дит на пять лет в раз­ме­ре 220 тысяч руб­лей. Усло­вия его воз­вра­та та­ко­вы:

  — каж­дый ян­варь долг воз­рас­та­ет на r% по срав­не­нию с кон­цом преды­ду­щею года;

  — с фев­ра­ля по июнь каж­до­го года не­об­хо­ди­мо вы­пла­тить одним пла­те­жом часть долга;

  — в июле 2027, 2028 и 2029 годов долг остаётся рав­ным 220 тысяч руб­лей;

  — вы­пла­ты в 2030 и 2031 годах равны;

  — к июлю 2031 года долг будет вы­пла­чен пол­но­стью.

Най­ди­те r, если из­вест­но, что долг будет вы­пла­чен пол­но­стью и общий раз­мер вы­плат со­ста­вит 420 тысяч руб­лей.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Тип 18 № 501048
i

Най­ди­те все зна­че­ния a, при каж­дом из ко­то­рых урав­не­ние

 дробь: чис­ли­тель: 4 в сте­пе­ни левая круг­лая скоб­ка минус x в квад­ра­те пра­вая круг­лая скоб­ка минус a умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка 1 минус x в квад­ра­те пра­вая круг­лая скоб­ка плюс a, зна­ме­на­тель: 2 в сте­пе­ни левая круг­лая скоб­ка 1 минус x в квад­ра­те пра­вая круг­лая скоб­ка минус 1 конец дроби =3

имеет хотя бы одно ре­ше­ние.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Тип 19 № 630168
i

На доске на­пи­са­но N раз­лич­ных на­ту­раль­ных чисел, каж­дое из ко­то­рых не пре­вос­хо­дит 159. Для любых двух на­пи­сан­ных на доске чисел a и b, таких, что a < b, ни одно из на­пи­сан­ных чисел не де­лит­ся на b – a, и ни одно из на­пи­сан­ных чисел не яв­ля­ет­ся де­ли­те­лем числа b – a.

а)  Могли ли на доске быть на­пи­са­ны какие-то два числа из чисел 28, 29 и 30?

б)  Среди на­пи­сан­ных на доске чисел есть 13. Может ли N быть равно 20?

в)  Най­ди­те наи­боль­шее зна­че­ние N.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.