Вариант № 34184539

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип 11 № 509077
i

На ри­сун­ке изоб­ражён гра­фик функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка a пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс b пра­вая круг­лая скоб­ка . Най­ди­те зна­че­ние x, при ко­то­ром f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = минус 6.


Ответ:

2
Тип Д1 № 27519
i

На диа­грам­ме по­ка­за­на сред­не­ме­сяч­ная тем­пе­ра­ту­ра воз­ду­ха в Ниж­нем Нов­го­ро­де (Горь­ком) за каж­дый месяц 1994 года. По го­ри­зон­та­ли ука­зы­ва­ют­ся ме­ся­цы, по вер­ти­ка­ли  — тем­пе­ра­ту­ра в гра­ду­сах Цель­сия. Опре­де­ли­те по диа­грам­ме, сколь­ко было ме­ся­цев с по­ло­жи­тель­ной сред­не­ме­сяч­ной тем­пе­ра­ту­рой.


Ответ:

3
Тип Д4 № 324460
i

На клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1×1 от­ме­че­ны точки A и B. Най­ди­те длину от­рез­ка AB.


Ответ:

4
Тип 4 № 320191
i

На олим­пиа­де по рус­ско­му языку 250 участ­ни­ков раз­ме­сти­ли в трёх ауди­то­ри­ях. В пер­вых двух уда­лось раз­ме­стить по 120 че­ло­век, остав­ших­ся пе­ре­ве­ли в за­пас­ную ауди­то­рию в дру­гом кор­пу­се. Най­ди­те ве­ро­ят­ность того, что слу­чай­но вы­бран­ный участ­ник писал олим­пи­а­ду в за­пас­ной ауди­то­рии.


Ответ:

5
Тип 6 № 26649
i

Най­ди­те ко­рень урав­не­ния \log }_2} левая круг­лая скоб­ка 15 плюс x пра­вая круг­лая скоб­ка =\log _23.


Ответ:

6
Тип 1 № 27358
i

В тре­уголь­ни­ке ABC угол C равен 90°, CH − вы­со­та, BH = 12,  тан­генс A = дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби . Най­ди­те AH.


Ответ:

7
Тип 8 № 317542
i

На ри­сун­ке изоб­ражён гра­фик y=f' левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка   — про­из­вод­ной функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка   — и во­семь точек на оси абс­цисс: x_1, x_2, x_3, \dots ,x_8. В сколь­ких из этих точек функ­ция f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка убы­ва­ет?


Ответ:

8
Тип 3 № 27108
i

Най­ди­те объем приз­мы, в ос­но­ва­ни­ях ко­то­рой лежат пра­виль­ные ше­сти­уголь­ни­ки со сто­ро­на­ми 2, а бо­ко­вые ребра равны 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та и на­кло­не­ны к плос­ко­сти ос­но­ва­ния под углом 30°.


Ответ:

9
Тип 7 № 26791
i

Най­ди­те  тан­генс альфа , если  дробь: чис­ли­тель: 3 синус альфа минус 5 ко­си­нус альфа плюс 2, зна­ме­на­тель: синус альфа плюс 3 ко­си­нус альфа плюс 6 конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби .


Ответ:

10
Тип 9 № 27998
i

Мяч бро­си­ли под углом  альфа к плос­кой го­ри­зон­таль­ной по­верх­но­сти земли. Время полeта мяча (в се­кун­дах) опре­де­ля­ет­ся по фор­му­ле t = дробь: чис­ли­тель: 2 v _0 синус альфа , зна­ме­на­тель: g конец дроби . При каком зна­че­нии угла  альфа (в гра­ду­сах) время полeта со­ста­вит 3 се­кун­ды, если мяч бро­са­ют с на­чаль­ной ско­ро­стью  v _0= 30 м/⁠с? Счи­тай­те, что уско­ре­ние сво­бод­но­го па­де­ния g=10 м/с в квад­ра­те .


Ответ:

11
Тип 10 № 26579
i

Из пунк­та A в пункт B од­но­вре­мен­но вы­еха­ли два ав­то­мо­би­ля. Пер­вый про­ехал с по­сто­ян­ной ско­ро­стью весь путь. Вто­рой про­ехал первую по­ло­ви­ну пути со ско­ро­стью, мень­шей ско­ро­сти пер­во­го на 13 км/⁠ч, а вто­рую по­ло­ви­ну пути  — со ско­ро­стью 78 км/⁠ч, в ре­зуль­та­те чего при­был в пункт В од­но­вре­мен­но с пер­вым ав­то­мо­би­лем. Най­ди­те ско­рость пер­во­го ав­то­мо­би­ля, если из­вест­но, что она боль­ше 48 км/⁠ч. Ответ дайте в км/⁠ч.


Ответ:

12

13
Тип 13 № 517829
i

а)  Ре­ши­те урав­не­ние 2x ко­си­нус x минус 8 ко­си­нус x плюс x минус 4=0.

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; Пи пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

14

На ребре AB пра­виль­ной четырёхуголь­ной пи­ра­ми­ды SABCD с ос­но­ва­ни­ем ABCD от­ме­че­на точка Q, причём AQ : QB  =  1 : 2. Точка P  — се­ре­ди­на ребра AS.

а)  До­ка­жи­те, что плос­кость DPQ пер­пен­ди­ку­ляр­на плос­ко­сти ос­но­ва­ния пи­ра­ми­ды.

б)  Най­ди­те пло­щадь се­че­ния DPQ, если пло­щадь се­че­ния DSB равна 6.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Тип 15 № 514256
i

Ре­ши­те не­ра­вен­ство \lg в сте­пе­ни 4 x минус 4\lg в кубе x плюс 5\lg в квад­ра­те x минус 2 де­ся­тич­ный ло­га­рифм x\geqslant0.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

16

Две окруж­но­сти ка­са­ют­ся внут­рен­ним об­ра­зом в точке A, причём мень­шая окруж­ность про­хо­дит через центр O боль­шей. Диа­метр BC боль­шей окруж­но­сти вто­рич­но пе­ре­се­ка­ет мень­шую окруж­ность в точке M, от­лич­ной от A. Лучи AO и AM вто­рич­но пе­ре­се­ка­ют боль­шую окруж­ность в точ­ках P и Q со­от­вет­ствен­но. Точка C лежит на дуге AQ боль­шей окруж­но­сти, не со­дер­жа­щей точку P.

а)  До­ка­жи­те, что пря­мые PQ и BC па­рал­лель­ны.

б)  Из­вест­но, что  синус \angle AOC= дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 15, зна­ме­на­тель: конец ар­гу­мен­та конец дроби 4. Пря­мые PC и AQ пе­ре­се­ка­ют­ся в точке K. Най­ди­те от­но­ше­ние QK:KA.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Тип 16 № 513106
i

15-го ян­ва­ря был выдан по­лу­го­до­вой кре­дит на раз­ви­тие биз­не­са. В таб­ли­це пред­став­лен гра­фик его по­га­ше­ния.

 

Дата15.0115.0215.0315.0415.0515.0615.07
Долг (в про­цен­тах от кре­ди­та)100%90%80%70%60%50%0%

 

В конце каж­до­го ме­ся­ца, на­чи­ная с ян­ва­ря, те­ку­щий долг уве­ли­чи­вал­ся на 5%, а вы­пла­ты по по­га­ше­нию кре­ди­та про­ис­хо­ди­ли в пер­вой по­ло­ви­не каж­до­го ме­ся­ца, на­чи­ная с фев­ра­ля. На сколь­ко про­цен­тов общая сумма вы­плат при таких усло­ви­ях боль­ше суммы са­мо­го кре­ди­та?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Тип 18 № 484646
i

Най­ди­те все зна­че­ния па­ра­мет­ра a, при каж­дом из ко­то­рых си­сте­ма

 си­сте­ма вы­ра­же­ний  новая стро­ка x в квад­ра­те минус 2x плюс |y| минус 15=0,  новая стро­ка x в квад­ра­те плюс левая круг­лая скоб­ка y минус a пра­вая круг­лая скоб­ка левая круг­лая скоб­ка y плюс a пра­вая круг­лая скоб­ка =2 левая круг­лая скоб­ка x минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка  конец си­сте­мы .

имеет ровно 6 ре­ше­ний.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Тип 19 № 526295
i

В ящике лежат 73 овоща, масса каж­до­го из ко­то­рых вы­ра­жа­ет­ся целым чис­лом грам­мов. В ящике есть хотя бы два овоща раз­лич­ной массы, а сред­няя масса всех ово­щей равна 1000 г. Сред­няя масса ово­щей , масса каж­до­го из ко­то­рых мень­ше 1000 г, равна 988 г. Сред­няя масса ово­щей, масса каж­до­го из ко­то­рых боль­ше 1000 г, равна 1030 г.

а)  Могло ли в ящике ока­зать­ся по­ров­ну ово­щей мас­сой мень­ше 1000 г и ово­щей мас­сой боль­ше 1000 г?

б)  Могло ли в ящике ока­зать­ся ровно 11 ово­щей, масса каж­до­го из ко­то­рых равна 1000 г?

в)  Какую наи­мень­шую массу может иметь овощ в этом ящике?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.