Вариант № 24571729

Основная волна ЕГЭ по математике 29.05.2019. Санкт-Петербург

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Тип 12 № 526289

а) Решите уравнение 8 синус в квадрате x минус 2 корень из 3 косинус левая круглая скобка дробь: числитель: Пи , знаменатель: 2 конец дроби минус x правая круглая скобка минус 9=0.

б) Найдите все корни этого уравнения, принадлежащие отрезку  левая квадратная скобка минус дробь: числитель: 5 Пи , знаменатель: 2 конец дроби ; минус Пи правая квадратная скобка .


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Тип 13 № 526290

В правильной треугольной пирамиде SABC сторона основания AB равна 9, а боковое ребро SA = 6. На рёбрах AB и SC отмечены точки K и M соответственно, причём AK : KB = SM : MC = 2 : 7. Плоскость α содержит прямую KM и параллельна прямой SA.

а) Докажите, что плоскость α делит ребро SB в отношении 2 : 7, считая от вершины S.

б) Найдите расстояние между прямыми SA и KM.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Тип 14 № 526291

Решите неравенство  логарифм по основанию 2 левая круглая скобка 14 минус 14x правая круглая скобка больше или равно логарифм по основанию 2 левая круглая скобка x в квадрате минус 5x плюс 4 правая круглая скобка плюс логарифм по основанию 2 левая круглая скобка x плюс 5 правая круглая скобка .


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Тип 16 № 526292

Точка O — центр вписанной в треугольник ABC окружности. Прямая OB вторично пересекает описанную около этого треугольника окружность в точке P.

а) Докажите, что \angle POC=\angle PCO.

б) Найдите площадь треугольника APC, если радиус описанной около треугольника ABC окружности равен 4, а \angle ABC = 120 градусов.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Тип 15 № 526293

В июле планируется взять кредит в банке на сумму 3 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы:

— каждый январь долг возрастает на 20% по сравнению с концом предыдущего года;

— с февраля по июнь каждого года необходимо выплатить часть долга;

— в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.

Чему будет равна общая сумма выплат после полного погашения кредита, если наименьший годовой платёж составит 0,24 млн рублей? (Считайте, что округления при вычислении платежей не производятся).


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Тип 17 № 526294

Найдите все значения параметра a, при каждом из которых уравнение

 дробь: числитель: x в квадрате минус 4x плюс a, знаменатель: 5x в квадрате минус 6ax плюс a в квадрате конец дроби =0

имеет ровно два различных решения.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

7
Тип 18 № 526295

В ящике лежат 73 овоща, масса каждого из которых выражается целым числом граммов. В ящике есть хотя бы два овоща различной массы, а средняя масса всех овощей равна 1000 г. Средняя масса овощей , масса каждого из которых меньше 1000 г, равна 988 г. Средняя масса овощей, масса каждого из которых больше 1000 г, равна 1030 г.

а) Могло ли в ящике оказаться поровну овощей массой меньше 1000 г и овощей массой больше 1000 г?

б) Могло ли в ящике оказаться ровно 11 овощей, масса каждого из которых равна 1000 г?

в) Какую наименьшую массу может иметь овощ в этом ящике?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить тестирование, свериться с ответами, увидеть решения.