ЕГЭ по математике 28.06.2017. Резервная волна. Восток (часть 2)
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
Основанием прямой четырехугольной призмы ABCDA1B1C1D1 является ромб ABCD, AB = AA1.
а) Докажите, что прямые A1C и BD перпендикулярны.
б) Найдите объем призмы, если A1C = BD = 2.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
В треугольник ABC, в котором длина стороны AC меньше длины стороны BC, вписана окружность с центром O. Точка B1 симметрична точке B относительно CO.
а) Докажите, что A, B, O и B1 лежат на одной окружности.
б) Найдите площадь четырёхугольника AOBB1, если AB = 10, AC = 6 и BC = 8.
На следующей странице вам будет предложено проверить их самостоятельно.
Пенсионный фонд владеет ценными бумагами, которые стоят 10t тыс. рублей в конце года t (t = 1; 2; 3;...). В конце любого года пенсионный фонд может продать ценные бумаги и положить деньги на счет в банке, при этом в конце каждого следующего года сумма на счете будет увеличиваться в 1 + r раз. Пенсионный фонд хочет продать ценные бумаги в конце такого года, чтобы в конце двадцать пятого года сумма на его счете была наибольшей. Расчеты показали, что для этого ценные бумаги нужно продавать строго в конце одиннадцатого года. При каких положительных значениях r это возможно?
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения a, при каждом из которых уравнение
имеет ровно один корень на отрезке [4; 8].
На следующей странице вам будет предложено проверить их самостоятельно.
В каждой клетке квадратной таблицы 6 × 6 стоит натуральное число, меньшее 7. Вася в каждом столбце находит наименьшее число и складывает шесть найденных чисел. Петя в каждой строке находит наименьшее число и складывает шесть найденных чисел.
а) Может ли сумма у Пети получиться в два раза больше, чем сумма у Васи?
б) Может ли сумма у Пети получиться в шесть раз больше, чем сумма у Васи?
в) В какое наибольшее число раз сумма у Пети может быть больше, чем сумма у Васи?
На следующей странице вам будет предложено проверить их самостоятельно.