Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — математика профильная
Вариант № 28142281
1.  
i

Роз­нич­ная цена учеб­ни­ка 180 руб­лей, она на 20% выше опто­вой цены. Какое наи­боль­шее число таких учеб­ни­ков можно ку­пить по опто­вой цене на 10 000 руб­лей?

2.  
i

Ма­те­ри­аль­ная точка дви­жет­ся от на­чаль­но­го до ко­неч­но­го по­ло­же­ния. На ри­сун­ке изоб­ражён гра­фик её дви­же­ния. На оси абс­цисс от­кла­ды­ва­ет­ся время в се­кун­дах, на оси ор­ди­нат  — рас­сто­я­ние от на­чаль­но­го по­ло­же­ния точки (в мет­рах). Най­ди­те сред­нюю ско­рость дви­же­ния точки. Ответ дайте в мет­рах в се­кун­ду.

3.  
i

Най­ди­те вы­со­ту тре­уголь­ни­ка ABC, опу­щен­ную на сто­ро­ну BC, если сто­ро­ны квад­рат­ных кле­ток равны  ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та .

4.  
i

В Вол­шеб­ной стра­не бы­ва­ет два типа по­го­ды: хо­ро­шая и от­лич­ная, причём по­го­да, уста­но­вив­шись утром, дер­жит­ся не­из­мен­ной весь день. Из­вест­но, что с ве­ро­ят­но­стью 0,8 по­го­да зав­тра будет такой же, как и се­год­ня. Се­год­ня 3 июля, по­го­да в Вол­шеб­ной стра­не хо­ро­шая. Най­ди­те ве­ро­ят­ность того, что 6 июля в Вол­шеб­ной стра­не будет от­лич­ная по­го­да.

6.  
i

В рав­но­бед­рен­ной тра­пе­ции диа­го­на­ли пер­пен­ди­ку­ляр­ны. Вы­со­та тра­пе­ции равна 12. Най­ди­те ее сред­нюю линию.

7.  
i

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка . Най­ди­те абс­цис­су точки, в ко­то­рой ка­са­тель­ная к гра­фи­ку y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка па­рал­лель­на оси абс­цисс или сов­па­да­ет с ней.

8.  
i

Гра­нью па­рал­ле­ле­пи­пе­да яв­ля­ет­ся ромб со сто­ро­ной 1 и ост­рым углом 60°. Одно из ребер па­рал­ле­ле­пи­пе­да со­став­ля­ет с этой гра­нью угол в 60° и равно 2. Най­ди­те объем па­рал­ле­ле­пи­пе­да.

9.  
i

Най­ди­те  дробь: чис­ли­тель: p левая круг­лая скоб­ка b пра­вая круг­лая скоб­ка , зна­ме­на­тель: p левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: b конец дроби пра­вая круг­лая скоб­ка конец дроби , если p левая круг­лая скоб­ка b пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка b плюс дробь: чис­ли­тель: 3, зна­ме­на­тель: b конец дроби пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 3b плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: b конец дроби пра­вая круг­лая скоб­ка при b не равно 0.

10.  
i

Ско­рость ко­леб­лю­ще­го­ся на пру­жи­не груза ме­ня­ет­ся по за­ко­ну  v левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка = 5 синус Пи t (см/с), где t  — время в се­кун­дах. Какую долю вре­ме­ни из пер­вой се­кун­ды ско­рость дви­же­ния была не менее 2,5 см/⁠с? Ответ вы­ра­зи­те де­ся­тич­ной дро­бью, если нужно, округ­ли­те до сотых.

11.  
i

Изюм по­лу­ча­ет­ся в про­цес­се сушки ви­но­гра­да. Сколь­ко ки­ло­грам­мов ви­но­гра­да по­тре­бу­ет­ся для по­лу­че­ния 20 ки­ло­грам­мов изюма, если ви­но­град со­дер­жит 90% воды, а изюм со­дер­жит 5% воды?

12.  
i

Най­ди­те точку мак­си­му­ма функ­ции y= ко­рень из: на­ча­ло ар­гу­мен­та: 4 минус 4x минус x в квад­ра­те конец ар­гу­мен­та .

13.  
i

а)  Ре­ши­те урав­не­ние: 4 синус в сте­пе­ни 4 2x плюс 3 ко­си­нус 4x минус 1=0.

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка Пи ; дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

14.  
i

На ри­сун­ке изоб­ра­же­ны гра­фи­ки двух ли­ней­ных функ­ций. Най­ди­те абс­цис­су точки пе­ре­се­че­ния гра­фи­ков.

15.  
i

Ре­ши­те не­ра­вен­ство: 2 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 в квад­ра­те x пра­вая круг­лая скоб­ка плюс x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 x пра­вая круг­лая скоб­ка мень­ше или равно 256.

16.  
i

В тре­уголь­ник ABC впи­са­на окруж­ность ра­ди­у­са R, ка­са­ю­ща­я­ся сто­ро­ны AC в точке M , причём AM  =  2R и CM  =  3R.

а)  До­ка­жи­те, что тре­уголь­ник ABC пря­мо­уголь­ный.

б)  Най­ди­те рас­сто­я­ние между цен­тра­ми его впи­сан­ной и опи­сан­ной окруж­но­стей, если из­вест­но, что R  =  2.

17.  
i

В рас­по­ря­же­нии на­чаль­ни­ка име­ет­ся бри­га­да ра­бо­чих в со­ста­ве 24 че­ло­век. Их нужно рас­пре­де­лить на день на два объ­ек­та. Если на пер­вом объ­ек­те ра­бо­та­ет t че­ло­век, то их су­точ­ная зар­пла­та со­став­ля­ет 4t2 у. е. Если на вто­ром объ­ек­те ра­бо­та­ет t че­ло­век, то их су­точ­ная зар­пла­та со­став­ля­ет t2 у. е. Как нужно рас­пре­де­лить на эти объ­ек­ты бри­га­ду ра­бо­чих, чтобы вы­пла­ты на их су­точ­ную зар­пла­ту ока­за­лись наи­мень­ши­ми? Сколь­ко у. е. в этом слу­чае при­дет­ся за­пла­тить ра­бо­чим?

18.  
i

Най­ди­те все зна­че­ния a, при каж­дом из ко­то­рых урав­не­ние

| ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка минус a| минус | ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка x плюс 2a|= левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в квад­ра­те

имеет хотя бы одно ре­ше­ние, мень­шее 2.

19.  
i

Дима и Ни­ки­та за­ду­ма­ли по цифре и со­об­щи­ли их Маше. Маша нашла сумму этих цифр, их раз­ность, а затем пе­ре­мно­жи­ла все 4 числа. Мог ли по­лу­чен­ный ре­зуль­тат быть равен:

а)  1989?

б)  2012?

в)  2016?

Если нет  — объ­яс­ни­те по­че­му, если да  — опре­де­ли­те цифры, за­ду­ман­ные Димой и Ни­ки­той.