СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задание 16 № 512359

В треугольник ABC вписана окружность радиуса R, касающаяся стороны AC в точке M , причём AM = 2R и CM = 3R.

а) Докажите, что треугольник ABC прямоугольный.

б) Найдите расстояние между центрами его вписанной и описанной окружностей, если известно, что R = 2 .

Решение.

а) Пусть вписанная окружность касается стороны BC в точке K. Обозначим BK = x. Пусть S — площадь треугольника, p — полупериметр. Тогда

С другой стороны, по формуле Герона

Из уравнения получаем, что R = x. Стороны треугольника ABC равны 5R, 4R и 3R, следовательно, этот треугольник прямоугольный с прямым углом при вершине B.

б) Пусть I и O — центры соответственно вписанной и описанной окружностей треугольника ABC. Точка O — середина гипотенузы AC = 5R = 10, и OM = AO − AM = 5 − 2R = 1.

Тогда

 

Ответ: б)


Аналоги к заданию № 512359: 512401 Все

Классификатор планиметрии: Окружности, Окружности и треугольники, Окружности и треугольники, Окружность, описанная вокруг треугольника