На бензоколонке один литр бензина стоит 35 руб. 60 коп. Водитель залил в бак 15 литров бензина и купил бутылку воды за 23 рубля. Сколько рублей сдачи он получит с 1000 рублей?
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
На бензоколонке один литр бензина стоит 35 руб. 60 коп. Водитель залил в бак 15 литров бензина и купил бутылку воды за 23 рубля. Сколько рублей сдачи он получит с 1000 рублей?
На рисунке жирными точками показано суточное количество осадков, выпадавших в Казани с 3 по 15 февраля 1909 года. По горизонтали указываются числа месяца, по вертикали — количество осадков, выпавших в соответствующий день, в миллиметрах. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку, сколько дней из данного периода выпадало от 3 до 7 миллиметров осадков.
На клетчатой бумаге изображены два круга. Площадь внутреннего круга равна 2. Найдите площадь заштрихованной фигуры.
Вероятность того, что на тестировании по математике учащийся П. верно решит больше 7 задач, равна 0,78. Вероятность того, что П. верно решит больше 6 задач, равна 0,89. Найдите вероятность того, что П. верно решит ровно 7 задач.
Решите уравнение Если уравнение имеет более одного корня, в ответе укажите меньший из них.
Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 9 и 4, считая от вершины, противолежащей основанию. Найдите периметр треугольника.
На рисунке изображен график производной функции f(x), определенной на интервале (−18; 6). Найдите количество точек минимума функции f(x) на отрезке [−13; 1].
Найдите площадь боковой поверхности правильной треугольной призмы, вписанной в цилиндр, радиус основания которого равен
а высота равна 6.
Найдите значение выражения
Расстояние от наблюдателя, находящегося на высоте h м над землёй, выраженное в километрах, до видимой им линии горизонта вычисляется по формуле где R = 6400 км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 3,2 км. К пляжу ведёт лестница, каждая ступенька которой имеет высоту 15 см. На какое наименьшее количество ступенек нужно подняться человеку, чтобы он увидел горизонт на расстоянии не менее 6,4 километров?
Два человека отправляются из одного дома на прогулку до опушки леса, находящейся в 1,5 км от дома. Один идёт со скоростью 2,2 км/ч, а другой — со скоростью 4,4 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии от точки отправления произойдёт их встреча? Ответ дайте в километрах.
Найдите точку минимума функции принадлежащую промежутку
а) Решите уравнение:
б) Определите, какие из его корней принадлежат отрезку
В параллелепипеде ABCDA1B1C1D1 точка F середина ребра AB, а точка E делит ребро DD1 в отношении DE : ED1 = 6 : 1. Через точки F и E проведена плоскость α, параллельная прямой AC и пересекающая диагональ B1D в точке О.
а) Докажите, что плоскость α делит диагональ DB1 в отношении DO : OB1 = 2 : 3.
б) Найдите угол между плоскостью α и плоскостью (ABC), если дополнительно известно, что ABCDA1B1C1D1 — правильная четырехугольная призма, сторона основания которой равна 4, а высота равна 7.
Решите неравенство
Окружность проходит через вершины A и B параллелограмма ABCD, пересекает стороны AD и BC в точках M и N соответственно и касается стороны CD.
а) Докажите, что точки C, D, M и N лежат на одной окружности.
б) Найдите длину отрезка AD, зная, что BM = a, MD = b, NC = c.
Георгий взял кредит в банке на сумму 804 000 рублей. Схема выплата кредита такова: в конце каждого года банк увеличивает на 10 процентов оставшуюся сумму долга, а затем Георгий переводит в банк свой очередной платеж. Известно, что Георгий погасил кредит за три года, причем каждый его следующий платеж был ровно вдвое меньше предыдущего. Какую сумму Георгий заплатил в третий раз? Ответ дайте в рублях.
Найдите все такие значения параметра a, при каждом из которых уравнение имеет решения на отрезке
Дано квадратное уравнение где a, b, c — натуральные числа, не превосходящие 200. Также известно, что числа a, b и c попарно отличаются друг от друга не менее, чем
а) Может ли такое уравнение иметь корень 9?
б) Может ли такое уравнение иметь корень 135?
в) Какой наибольший целый корень может иметь такое уравнение?