При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
Установка двух счётчиков воды (холодной и горячей) стоит 3500 рублей. До установки счётчиков за воду платили 1700 рублей ежемесячно. После установки счётчиков ежемесячная оплата воды стала составлять 1100 рублей. Через какое наименьшее количество месяцев экономия по оплате воды превысит затраты на установку счётчиков, если тарифы на воду не изменятся?
Ответ:
На рисунке изображен график осадков в Калининграде с 4 по 10 февраля 1974 г. На оси абсцисс откладываются дни, на оси ординат — осадки в мм.
Определите по рисунку, сколько дней из данного периода выпадало от 2 до 8 мм осадков.
Ответ:
На клетчатой бумаге с размером клетки
изображён круг. Найдите площадь закрашенного сектора. Ответ дайте в квадратных сантиметрах.
Ответ:
На борту самолёта 28 кресел расположены рядом с запасными выходами и 16 — за перегородками, разделяющими салоны. Все эти места удобны для пассажира высокого роста. Остальные места неудобны. Пассажир В. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру В. достанется удобное место, если всего в самолёте 400 мест.
Ответ:
Решите уравнение
Ответ:
В треугольнике ABC AC = BC, AB = 6,
Найдите высоту AH.
Ответ:
На рисунке изображён график функции и десять точек на оси абсцисс: x1, x2, x3, x4, x5, x6, x7, x8, x9, x10. В скольких из этих точек производная функции
положительна?
Ответ:
В правильной четырехугольной пирамиде SABCD точка O — центр основания, S — вершина,
Найдите боковое ребро
Ответ:
Вычислите:
Ответ:
Небольшой мячик бросают под острым углом к плоской горизонтальной поверхности земли. Максимальная высота полeта мячика, выраженная в метрах, определяется формулой
где
м/с — начальная скорость мячика, а g — ускорение свободного падения (считайте
м/с
). При каком наименьшем значении угла
(в градусах) мячик пролетит над стеной высотой 2,2 м на расстоянии 1 м?
Ответ:
Одиннадцать одинаковых рубашек дешевле куртки на 1%. На сколько процентов тринадцать таких же рубашек дороже куртки?
Ответ:
Найдите наибольшее значение функции на отрезке
Ответ:
а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие промежутку
На следующей странице вам будет предложено проверить их самостоятельно.
Дана правильная четырехугольная пирамида SABCD. Боковое ребро сторона основания равна 4.
а) Докажите, что точки B и S равноудалены от плоскости ADM, где M — середина ребра SC.
б) Найдите расстояние от точки B до плоскости ADM.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство:
На следующей странице вам будет предложено проверить их самостоятельно.
В треугольнике ABC на стороне BC выбрана точка D так, что BD : DC = 1 : 2. Медиана CE пересекает отрезок AD в точке F. Какую часть площади треугольника ABC составляет площадь треугольника AEF?
На следующей странице вам будет предложено проверить их самостоятельно.
31 декабря 2014 года Пётр взял в банке некоторую сумму в кредит под некоторый процент годовых. Схема выплаты кредита следующая — 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на а%), затем Пётр переводит очередной транш. Если он будет платить каждый год по 2 592 000 рублей, то выплатит долг за
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения параметра a, при каждом из которых наименьшее значение функции больше 1.
На следующей странице вам будет предложено проверить их самостоятельно.
На доске написаны числа 2 и 3. За один ход два числа a и b, записанные на доске, заменяются на два числа: или a + b и 2a − 1, или a + b и 2b − 1 (например, из чисел 2 и 3 можно получить либо 3 и 5, либо 5 и 5).
а) Приведите пример последовательности ходов, после которых одно из двух чисел, написанных на доске, окажется числом 13.
б) Может ли после 200 ходов одно из двух чисел, написанных на доске, оказаться числом 400?
в) Сделали 513 ходов, причём на доске никогда не было написано одновременно двух равных чисел. Какое наименьшее значение может принимать разность большего и меньшего из полученных чисел?
На следующей странице вам будет предложено проверить их самостоятельно.