математика
Информатика
Русский язык
Английский язык
Немецкий язык
Французcкий язык
Испанский язык
Физика
Химия
Биология
География
Обществознание
Литература
История
сайты - меню - вход - новости




Каталог заданий.
Окружности и четырёхугольники
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Задания Д11 C4 № 484617

Четырехугольник ABCD описан около окружности и вписан в окружность. Прямые AB и DC пересекаются в точке M. Найдите площадь четырехугольника, если известно, что ∠AMD = α и радиусы окружностей, вписанных в треугольники BCM и AMD равны соответственно r и R.


Аналоги к заданию № 484617: 484618 Все


2
Задания Д11 C4 № 507492

Окружность S радиуса 24 вписана в равнобедренную трапецию с основаниями 36 и 64. Найдите радиус окружности, которая касается основания, боковой стороны и окружности S.


Аналоги к заданию № 507492: 511433 Все

Источник:

3
Задания Д11 C4 № 507617

Дан параллелограмм ABCD, AB = 3, BC = 5, ∠A = 60°. Окружность с центром в точке O касается биссектрисы угла D и двух сторон параллелограмма, исходящих из вершины одного его острого угла. Найдите площадь четырёхугольника ABOD.


Аналоги к заданию № 507617: 507662 507812 Все

Решение · ·

4
Задания Д11 C4 № 507623

В треугольнике ABC AB = 13, BC = 10, CA = 7. Точка D лежит на прямой BC так, что BD : DC = 1 : 4. Окружности, вписанные в каждый из треугольников ADC и ADB, касаются стороны AD в точках E и F. Найдите длину отрезка EF.

Источник:

5
Задания Д11 C4 № 507647

Площадь трапеции ABCD равна 72, а одно из оснований трапеции вдвое больше другого. Диагонали пересекаются в точке O, отрезки, соединяющие середину P основания AD с вершинами B и C, пересекаются с диагоналями трапеции в точках M и N соответственно. Найдите площадь четырёхугольника OMPN.


Аналоги к заданию № 507647: 511460 Все

Источник:

6
Задания Д11 C4 № 507662

Дан параллелограмм ABCD, AB = 3, BC = 7, ∠A = 60°. Окружность с центром в точке O касается биссектрисы угла D и двух сторон параллелограмма, исходящих из вершины одного его острого угла. Найдите площадь четырёхугольника ABOD.

Решение · ·

7
Задания Д11 C4 № 507677

Дан прямоугольный треугольник ABC с катетами AC = 12 и BC = 5. С центром в вершине B проведена окружность S радиуса 8. Найдите радиус окружности, вписанной в угол BAC и касающейся окружности S.

Источник:
Решение · ·

8
Задания Д11 C4 № 507812

Дан параллелограмм ABCD, AB = 3, BC = 5, ∠A = 60°. Окружность с центром в точке O касается биссектрисы угла D и двух сторон параллелограмма, исходящих из вершины одного его острого угла. Найдите площадь четырёхугольника ABOD.

Решение · ·

9
Задания Д11 C4 № 507824

В параллелограмме ABCD известны стороны AB = a, BC = b и ∠BAD = α. Найдите расстояние между центрами окружностей, описанных около треугольников BCD и DAB.


Аналоги к заданию № 507824: 511499 Все

Источник:

10
Задания Д11 C4 № 512873

Окружности радиусов 3 и 5 с центрами O1 и O2 соответственно касаются в точке A. Прямая, проходящая через точку A, вторично пересекает меньшую окружность в точке B, а большую — в точке С. Найдите площадь выпуклого четырёхугольника, вершинами которого являются точки O1, O2, B и C, если ∠ABO1 = 15°.

Источник: ЕГЭ — 2014. Ос­нов­ная волна.

11
Задания Д11 C4 № 513255

В параллелограмм вписана окружность.

а) Докажите, что этот параллелограмм — ромб.

б) Окружность, касающаяся стороны ромба, делит её на отрезки, равные 5 и 3. Найдите площадь четырёхугольника с вершинами в точках касания окружности со сторонами ромба.


Аналоги к заданию № 513255: 514720 Все

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2016

12
Задания Д11 C4 № 513261

Сторона CD прямоугольника ABCD касается некоторой окружности в точке M. Продолжение стороны AD пересекает окружность в точках P и Q, причём точка P лежит между точками D и Q. Прямая BC касается окружности, а точка Q лежит на прямой BM.

а) Докажите, что ∠DMP = ∠CBM.

б) Известно, что CM = 17 и CD = 32. Найдите сторону AD.

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2016

13
Задания Д11 C4 № 484618

Четырехугольник KLMN описан около окружности и вписан в окружность. Прямые KL и NM пересекаются в точке P. Найдите площадь треугольника KPN, если известно, что ∠KPN = φ и радиусы окружностей, вписанных в треугольники KPN и LMP равны соответственно r и R.


14
Задания Д11 C4 № 500015

Боковые стороны AB и CD трапеции ABCD равны 6 и 8 соответственно. Отрезок, соединяющий середины диагоналей, равен 5, средняя линия трапеции равна 25. Прямые AB и CD пересекаются в точке М. Найдите радиус окружности, вписанной в треугольник ВМС.


Аналоги к заданию № 500015: 500470 501551 501557 505243 511332 500021 Все


15
Задания Д11 C4 № 500021

Боковые стороны KL и MN трапеции KLMN равны 8 и 17 соответственно. Отрезок, соединяющий середины диагоналей, равен 7,5, средняя линия трапеции равна 17,5. Прямые KL и MN пересекаются в точке A. Найдите радиус окружности, вписанной в треугольник ALM.


16
Задания Д11 C4 № 500644

Дан прямоугольник KLMN со сторонами: KN = 11, MN = 8. Прямая, проходящая через вершину М, касается окружности с центром К радиуса 4 и пересекается с прямой KN в точке Q. Найдите QK.


17
Задания Д11 C4 № 500642

Дан прямоугольник KLMN со сторонами: KN = 13, MN = 6. Прямая, проходящая через вершину М, касается окружности с центром К радиуса 3 и пересекается с прямой KN в точке Q. Найдите QK.


Аналоги к заданию № 500642: 511346 500644 Все


18
Задания Д11 C4 № 484615

Дан ромб ABCD с диагоналями AC = 24 и BD = 10. Проведена окружность радиуса с центром в точке пересечения диагоналей ромба. Прямая, проходящая через вершину B касается этой окружности и пересекает прямую CD в точке M. Найдите CM.

Решение · ·

19
Задания Д11 C4 № 484606

Четырехугольник ABCD описан около окружности и вписан в другую окружность. Прямые AD и BC пересекаются в точке M. Найдите периметр треугольника ABM, если известно, что AB = a и CD = b.

Решение · ·

20
Задания Д11 C4 № 513430

Стороны KN и LM трапеции KLMN параллельны, прямые LM и MN — касательные к окружности, описанной около треугольника KLN.

а) Докажите, что треугольники LMN и KLN подобны.

б) Найдите площадь треугольника KLN, если известно, что KN = 3, а ∠LMN = 120°.


Аналоги к заданию № 513430: 513449 514189 513627 Все


21
Задания Д11 C4 № 513627

Точка O — центр окружности, описанной около остроугольного треугольника ABC, I — центр вписанной в него окружности, H — точка пересечения высот. Известно, что

а) Докажите, что точка I лежит на окружности, описанной около треугольника BOC.

б) Найдите угол OIH, если

Решение · ·

22
Задания Д11 C4 № 514028

Окружность, проходящая через вершины A, C и D прямоугольной трапеции ABCD с основаниями AD и BC, пересекает меньшую боковую сторону AB в точке P и касается прямой BC. Известно, что AD = CD.

а) Докажите, что CP — биссектриса угла ACB.

б) В каком отношении прямая DP делит площадь трапеции?


Аналоги к заданию № 514028: 514047 Все


23
Задания Д11 C4 № 514373

В прямоугольной трапеции ABCD с прямым углом при вершине A расположены две окружности. Одна из них касается боковых сторон и большего основания AD, вторая — боковых сторон, меньшего основания BC и первой окружности.

а) Прямая, проходящая через центры окружностей, пересекает основанеи AD в точке P. Докажите, что

б) Найдите площадь трапеции, если радиусы окружностей равны 3 и 1.


Аналоги к заданию № 514373: 519901 Все

Источник: За­да­ния 16 (С4) ЕГЭ 2015

24
Задания Д11 C4 № 514374

Диагонали AC и BD четырёхугольника ABCD, вписанного в окружность, пересекается в точке P, причём BC = CD.

а) Докажите, что

б) Найдите площадь треугольника COD, где O — центр окружности, вписанной в треугольник ABD, если дополнительно известно, что BD — диаметр описанной около четырёхугольника ABCD окружности, AB = 6, а


Аналоги к заданию № 514374: 519902 Все

Источник: За­да­ния 16 (С4) ЕГЭ 2015

25
Задания Д11 C4 № 514522

Квадрат ABCD вписан в окружность. Хорда CE пересекает его диагональ BD в точке K.

а) Докажите, что

б) Найдите отношение CK и KE, если


Аналоги к заданию № 514522: 514557 Все

Источник: За­да­ния 16 (С4) ЕГЭ 2016, ЕГЭ по математике 06.06.2016. Ос­нов­ная волна. Вариант 512 (C часть).

26
Задания Д11 C4 № 514626

На катетах AC и BC прямоугольного треугольника ABC как на диаметрах построены окружности, второй раз пересекающиеся в точке M. Точка Q лежит на меньшей дуге MB окружности с диаметром BC. Прямая CQ второй раз пересекает окружность с диаметром AC в точке P.

а) Докажите, что прямые PM и QM перпендикулярны.

б) Найдите PQ, если AM = 1, BM = 3, а Q — середина дуги MB.


Аналоги к заданию № 514626: 514640 Все

Источник: За­да­ния 16 (С4) ЕГЭ 2016, ЕГЭ по математике 06.06.2016. Ос­нов­ная волна. Вариант 701 (C часть).

27
Задания Д11 C4 № 514720

В параллелограмм вписана окружность.

а) Докажите, что этот параллелограмм — ромб.

б) Окружность, касающаяся стороны ромба, делит её на отрезки, равные 3 и 2. Найдите площадь четырёхугольника с вершинами в точках касания окружности со сторонами ромба.

Решение · ·

Пройти тестирование по этим заданиям