Четырехугольник KLMN описан около окружности и вписан в окружность. Прямые KL и NM пересекаются в точке P. Найдите площадь треугольника KPN, если известно, что ∠KPN = φ и радиусы окружностей, вписанных в треугольники KPN и LMP равны соответственно r и R.
Первый случай.
Центры O1 и O окружностей, вписанных в треугольники KPN и LMP соответственно, лежат на биссектрисе PO угла KPN. Окружность, вписанная в четырехугольник KLMN, является также окружностью, вписанной в треугольник KPN и вневписанной окружностью треугольника LMP.
Четырехугольник KLMN вписан в окружность, следовательно, ∠LKN + ∠LMN = 180°. Но ∠LMP + ∠LMN = 180°, откуда ∠LKN = ∠LMP. Так как треугольники KPN и LMP имеют еще общий угол KPN, они подобны, причем коэффициент подобия равен отношению радиусов окружностей, вписанных в эти треугольники.
Далее имеем:
1)
2) SΔLPM = pR, где p — полупериметр треугольника LPM равный длине отрезка AP, как сумма отрезков касательных проведенных из одной точки.
3) из прямоугольного треугольника OAP находим откуда
Подставляя найденное SΔLPM в формулу площади треугольника KPN, окончательно получаем
Второй случай.
Отличается от первого расположением точки P левее точек N и K. В этом случае R > r и в рассуждении они и треугольники LMP и KPN должны быть поменяны местами. Таким образом, в этом случае KPN — меньший из двух треугольников, а радиус вписанной в него окружности r. Значит
SKPN = rp, где p — полупериметр треугольника KPN равный отрезку PB. При этом, как и в первом случае, Таким образом,
Ответ: или

