Задания
Версия для печати и копирования в MS WordПериметр прямоугольной трапеции, описанной около окружности, равен 32, её большая боковая сторона равна 9. Найдите радиус окружности.
Решение.
Пусть радиус вписанной окружности равен r, тогда длина меньшей боковой стороны равна 2r. Суммы длин противоположных сторон описанного вокруг окружности четырехугольника равны, поэтому сумма оснований трапеции равна сумме длин ее боковых сторон или 2r + 9. Тогда для периметра трапеции имеем 2(2r + 9) = 32, откуда r = 3,5.

