Вариант № 27540131

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип Д2 № 26628
i

Же­лез­но­до­рож­ный билет для взрос­ло­го стоит 720 руб­лей. Сто­и­мость би­ле­та для школь­ни­ка со­став­ля­ет 50% от сто­и­мо­сти би­ле­та для взрос­ло­го. Груп­па со­сто­ит из 15 школь­ни­ков и 2 взрос­лых. Сколь­ко руб­лей стоят би­ле­ты на всю груп­пу?


Ответ:

2
Тип Д1 № 27522
i

На диа­грам­ме по­ка­за­на сред­не­ме­сяч­ная тем­пе­ра­ту­ра воз­ду­ха в Санкт-Пе­тер­бур­ге за каж­дый месяц 1999 года. По го­ри­зон­та­ли ука­зы­ва­ют­ся ме­ся­цы, по вер­ти­ка­ли  — тем­пе­ра­ту­ра в гра­ду­сах Цель­сия. Опре­де­ли­те по диа­грам­ме, сколь­ко было ме­ся­цев, когда сред­не­ме­сяч­ная тем­пе­ра­ту­ра не пре­вы­ша­ла 4 гра­ду­сов Цель­сия.


Ответ:

3
Тип Д4 № 27851
i

На клет­ча­той бу­ма­ге с раз­ме­ром клет­ки  ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та \times ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та изоб­ражён четырёхуголь­ник ABCD. Най­ди­те его пе­ри­метр.


Ответ:

4
Тип 5 № 320196
i

При из­го­тов­ле­нии под­шип­ни­ков диа­мет­ром 67 мм ве­ро­ят­ность того, что диа­метр будет от­ли­чать­ся от за­дан­но­го не боль­ше чем на 0,01 мм, равна 0,965. Най­ди­те ве­ро­ят­ность того, что слу­чай­ный под­шип­ник будет иметь диа­метр мень­ше чем 66,99 мм или боль­ше чем 67,01 мм.


Ответ:

5
Тип 6 № 26670
i

Най­ди­те ко­рень урав­не­ния:  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 3 плюс x пра­вая круг­лая скоб­ка =512.


Ответ:

6

Около тра­пе­ции опи­са­на окруж­ность. Пе­ри­метр тра­пе­ции равен 22, сред­няя линия равна 5. Най­ди­те бо­ко­вую сто­ро­ну тра­пе­ции.


Ответ:

7
Тип 8 № 119971
i

На ри­сун­ке изоб­ра­жен гра­фик функ­ции y  =  f(x), опре­де­лен­ной на ин­тер­ва­ле (−3; 9). Най­ди­те ко­ли­че­ство точек, в ко­то­рых про­из­вод­ная функ­ции f(x) равна 0.


Ответ:

8
Тип 3 № 245342
i

Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки A_1, B_1, B, C пра­виль­ной тре­уголь­ной приз­мы ABCA_1B_1C_1, пло­щадь ос­но­ва­ния ко­то­рой равна 4, а бо­ко­вое ребро равно 3.


Ответ:

9
Тип 7 № 26781
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 3 ко­си­нус левая круг­лая скоб­ка Пи минус бета пра­вая круг­лая скоб­ка плюс синус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс бета пра­вая круг­лая скоб­ка , зна­ме­на­тель: ко­си­нус левая круг­лая скоб­ка бета плюс 3 Пи пра­вая круг­лая скоб­ка конец дроби .


Ответ:

10
Тип 9 № 27996
i

Во­до­лаз­ный ко­ло­кол, со­дер­жа­щий в на­чаль­ный мо­мент вре­ме­ни  v = 3 моль воз­ду­ха объeмом V_1=8 л, мед­лен­но опус­ка­ют на дно водоeма. При этом про­ис­хо­дит изо­тер­ми­че­ское сжа­тие воз­ду­ха до ко­неч­но­го объeма V_2. Ра­бо­та, со­вер­ша­е­мая водой при сжа­тии воз­ду­ха, опре­де­ля­ет­ся вы­ра­же­ни­ем A = альфа v T ло­га­рифм по ос­но­ва­нию 2 дробь: чис­ли­тель: V_1 , зна­ме­на­тель: V_2 конец дроби (Дж), где  альфа =5,75 по­сто­ян­ная, а T = 300К тем­пе­ра­ту­ра воз­ду­ха. Какой объeм V_2 (в лит­рах) ста­нет за­ни­мать воз­дух, если при сжа­тии газа была со­вер­ше­на ра­бо­та в 10 350 Дж?


Ответ:

11
Тип 10 № 323851
i

Пли­точ­ник пла­ни­ру­ет уло­жить 175 м2 плит­ки. Если он будет укла­ды­вать на 10 м2 в день боль­ше, чем за­пла­ни­ро­вал, то за­кон­чит ра­бо­ту на 2 дня рань­ше. Сколь­ко квад­рат­ных мет­ров плит­ки в день пла­ни­ру­ет укла­ды­вать пли­точ­ник?


Ответ:

12

13

а)  Ре­ши­те урав­не­ние  дробь: чис­ли­тель: ко­си­нус 2x плюс синус x, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: синус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка конец ар­гу­мен­та конец дроби =0.

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 11 Пи , зна­ме­на­тель: 2 конец дроби ; 7 Пи пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Тип 14 № 513264
i

Дан куб ABCDA1B1C1D1.

а)  До­ка­жи­те, что пря­мая BD1 пер­пен­ди­ку­ляр­на плос­ко­сти ACB1.

б)  Най­ди­те угол между плос­ко­стя­ми AD1C1 и A1D1C.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Тип 15 № 508469
i

Ре­ши­те не­ра­вен­ство:  ло­га­рифм по ос­но­ва­нию 2 в квад­ра­те левая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 2 x пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию 2 ло­га­рифм по ос­но­ва­нию 2 в квад­ра­те x мень­ше или равно 3.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Тип 17 № 514098
i

К двум не­пе­ре­се­ка­ю­щим­ся окруж­но­стям рав­ных ра­ди­у­сов про­ве­де­ны две па­рал­лель­ные общие ка­са­тель­ные. Окруж­но­сти ка­са­ют­ся одной из этих пря­мых в точ­ках A и B. Через точку C, ле­жа­щую на от­рез­ке AB, про­ве­де­ны ка­са­тель­ные к этим окруж­но­стям, пе­ре­се­ка­ю­щие вто­рую пря­мую в точ­ках D и E, причём от­рез­ки CA и CD ка­са­ют­ся одной окруж­но­сти, а от­рез­ки CB и CE  — дру­гой.

а)  До­ка­жи­те, что пе­ри­метр тре­уголь­ни­ка CDE вдвое боль­ше рас­сто­я­ния между цен­тра­ми окруж­но­стей.

б)  Най­ди­те DE, если ра­ди­у­сы окруж­но­стей равны 5, рас­сто­я­ние между их цен­тра­ми равно 18, а AC  =  8.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Тип 11 № 509124
i

На ри­сун­ке изоб­ражён гра­фик функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =a ко­си­нус x плюс b. Най­ди­те a.


Ответ:

18
Тип 18 № 520788
i

Най­ди­те все зна­че­ния а, при каж­дом из ко­то­рых си­сте­ма урав­не­ний

 си­сте­ма вы­ра­же­ний ax в квад­ра­те плюс ay в квад­ра­те минус левая круг­лая скоб­ка 2a минус 5 пра­вая круг­лая скоб­ка x плюс 2ay плюс 1=0,x в квад­ра­те плюс y=xy плюс x конец си­сте­мы .

имеет ровно че­ты­ре раз­лич­ных ре­ше­ния.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Тип 19 № 509826
i

На доске на­пи­са­но число 2015 и еще не­сколь­ко (не менее двух) на­ту­раль­ных чисел, не пре­вос­хо­дя­щих 5000. Все на­пи­сан­ные на доске числа раз­лич­ны. Сумма любых двух из на­пи­сан­ных чисел де­лит­ся на какое-⁠ни­будь из осталь­ных.

а)  Может ли на доске быть на­пи­са­но ровно 1009 чисел?

б)  Может ли на доске быть на­пи­са­но ровно пять чисел?

в)  Какое наи­мень­шее ко­ли­че­ство чисел может быть на­пи­са­но на доске?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.