Окружности и четырехугольники, разные задачи
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
Окружность с центром O, расположенном внутри прямоугольной трапеции ABCD, проходит через вершины B и C большей боковой стороны этой трапеции и касается боковой стороны AD в точке T.
а) Докажите, что угол BOC вдвое больше угла BTC.
б) Найдите расстояние от точки T до прямой BC, если основания трапеции AB и CD равны 4 и 9 соответственно.
Дана равнобедренная трапеция KLMN с основаниями KN и LM. Окружность с центром O, построенная на боковой стороне KL как на диаметре, касается боковой стороны MN и второй раз пересекает большее основание KN в точке H, точка Q — середина MN.
а) Докажите, что четырёхугольник NQOH — параллелограмм.
б) Найдите KN, если и LM = 1.
Сторона CD прямоугольника ABCD касается некоторой окружности в точке M. Продолжение стороны AD пересекает окружность в точках P и Q, причём точка P лежит между точками D и Q. Прямая BC касается окружности, а точка Q лежит на прямой BM.
а) Докажите, что ∠DMP = ∠CBM.
б) Известно, что CM = 17 и CD = 32. Найдите сторону AD.
Стороны KN и LM трапеции KLMN параллельны, прямые LM и MN — касательные к окружности, описанной около треугольника KLN.
а) Докажите, что треугольники LMN и KLN подобны.
б) Найдите площадь треугольника KLN, если известно, что KN = 3, а ∠LMN = 120°.
Одна окружность вписана в прямоугольную трапецию, а вторая касается большей боковой стороны и продолжений оснований.
а) Докажите, что расстояние между центрами окружностей равно большей боковой стороне трапеции.
б) Найдите расстояние от вершины одного из прямых углов трапеции до центра второй окружности, если точка касания первой окружности с большей боковой стороной трапеции делит её на отрезки, равные
Пройти тестирование по этим заданиям

