СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
Математика профильного уровня
Cайты, меню, вход, новости


Задания
Версия для печати и копирования в MS Word
Задание 16 № 519904

Дана равнобедренная трапеция ABCD с основаниями BC и AD. На стороне AB как на диаметре построена окружность с центром в точке O, касающаяся стороны CD и повторно пересекающая основание AD в точке H. Точка Q — середина стороны CD.

а) Докажите, что OQDH — параллелограмм.

б) Найдите AD, если ∠BAD = 60°, BC = 2.

Решение.

а) Треугольник AOH равнобедренный и трапеция ABCD равнобедренная, поэтому ∠AHO = ∠OAH = ∠CDA. Значит, прямые OH и CD параллельны, а так как OQ — средняя линия трапеции, то параллельны прямые OQ и AD. Противоположные стороны четырёхугольника DQOH попарно параллельны, следовательно, DQOH — параллелограмм.

б) Пусть окружность с центром в точке O радиуса R касается стороны CD в точке P. В прямоугольных треугольниках OPQ и AHB имеем

Поэтому

Пусть AH = x. Поскольку трапеция ABCD равнобедренная, AD = 2AH + BC, DH = AH + BC = x + 2.

Тогда

откуда . Значит,

 

Ответ: б)


Аналоги к заданию № 512338: 512380 509204 510074 519904 Все

Классификатор планиметрии: Окружности и четырёхугольники