СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Каталог заданий.
Последовательности и прогрессии

Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Задание 19 № 501512

Даны n различных натуральных чисел, составляющих арифметическую прогрессию

а) Может ли сумма всех данных чисел быть равной 14?

б) Каково наибольшее значение n, если сумма всех данных чисел меньше 900?

в) Найдите все возможные значения n, если сумма всех данных чисел равна 123.


2
Задание 19 № 502079

Каждое из чисел a1, a2, …, a350 равно 1, 2, 3 или 4. Обозначим

S1 = a1+a2+...+a350,

S2 = a12+a22+...+a3502,

S3 = a13+a23+...+a3503,

S4 = a14+a24+...+a3504.

Известно, что S1 = 513.

 

а) Найдите S4, если еще известно, что S2 = 1097, S3 = 3243.

б) Может ли S4 = 4547 ?

в) Пусть S4 = 4745. Найдите все значения, которые может принимать S2.


Аналоги к заданию № 502079: 502099 Все

Источник: ЕГЭ по ма­те­ма­ти­ке 19.06.2013. Ос­нов­ная волна, ре­зерв­ный день. Центр. Ва­ри­ант 501.

3
Задание 19 № 505663

В строку подряд написано 1000 чисел. Под каждым числом a первой строки напишем число, указывающее, сколько раз число a встречается в первой строке. Из полученной таким образом второй строки аналогично получаем третью: под каждым числом второй строки пишем, сколько раз оно встречается во второй строке. Затем из третьей строки так же получаем четвёртую, из четвёртой — пятую, и так далее.

а) Докажите, что некоторая строчка совпадает со следующей.

б) Докажите, что 11‐я строка совпадает с 12‐й.

в) Приведите пример такой первоначальной строчки, для которой 10‐я строка не совпадает с 11‐й.

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 51.

4
Задание 19 № 505669

Можно ли из последовательности 1, 1/2, 1/3, 1/4,… выделить арифметическую прогрессию

а) длиной 4

б) длиной 5

в) длиной k, где k — любое натуральное число?

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 52.

5
Задание 19 № 505723

Даны две последовательности: 2, 4, 8, 16, 14, 10, 2 и 3, 6, 12. В каждой из них каждое число получено из предыдущего по одному и тому же закону.

а) Найдите этот закон.

б) Найдите все натуральные числа, переходящие сами в себя (по этому закону).

в) Докажите, что число 21991 после нескольких переходов станет однозначным.

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 61.
Решение · ·

Пройти тестирование по этим заданиям