математика
Информатика
Русский язык
Английский язык
Немецкий язык
Французcкий язык
Испанский язык
Физика
Химия
Биология
География
Обществознание
Литература
История
сайты - меню - вход - новости




Каталог заданий.
Последовательности и прогрессии
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Задание 19 № 501512

Даны n различных натуральных чисел, составляющих арифметическую прогрессию

а) Может ли сумма всех данных чисел быть равной 14?

б) Каково наибольшее значение n, если сумма всех данных чисел меньше 900?

в) Найдите все возможные значения n, если сумма всех данных чисел равна 123.


2
Задание 19 № 502079

Каждое из чисел a1, a2, …, a350 равно 1, 2, 3 или 4. Обозначим

S1 = a1+a2+...+a350,

S2 = a12+a22+...+a3502,

S3 = a13+a23+...+a3503,

S4 = a14+a24+...+a3504.

Известно, что S1 = 513.

 

а) Найдите S4, если еще известно, что S2 = 1097, S3 = 3243.

б) Может ли S4 = 4547 ?

в) Пусть S4 = 4745. Найдите все значения, которые может принимать S2.


Аналоги к заданию № 502079: 502099 Все

Источник: ЕГЭ по ма­те­ма­ти­ке 19.06.2013. Ос­нов­ная волна, ре­зерв­ный день. Центр. Ва­ри­ант 501.

3
Задание 19 № 507226

Можно ли привести пример пяти различных натуральных чисел, произведение которых равно 792 и

а) пять;

б) четыре;

в) три

из них образуют геометрическую прогрессию?


4
Задание 19 № 507588

Возрастающая конечная арифметическая прогрессия состоит из различных целых неотрицательных чисел. Математик вычислил разность между квадратом суммы всех членов прогрессии и суммой их квадратов. Затем математик добавил к этой прогрессии следующий её член и снова вычислил такую же разность.

а) Приведите пример такой прогрессии, если во второй раз разность оказалась на 40 больше, чем в первый раз.

б) Во второй раз разность оказалась на 1768 больше, чем в первый раз. Могла ли прогрессия сначала состоять из 13 членов?

в) Во второй раз разность оказалась на 1768 больше, чем в первый раз. Какое наибольшее количество членов могло быть в прогрессии сначала?


5
Задание 19 № 507626

Можно ли привести пример пяти различных натуральных чисел, произведение которых равно 1008 и

а) пять;

б) четыре;

в) три

из них образуют геометрическую прогрессию?

Решение · ·

6
Задание 19 № 509932

Последовательность a1, a2,..., an,... состоит из натуральных чисел, причём при всех натуральных n.

а) Может ли выполняться равенство 5a5 = 9a4?

б) Может ли выполняться равенство 5a5 = 7a4?

в) При каком наибольшем натуральном n может выполняться равенство


Аналоги к заданию № 509932: 509585 Все


7
Задание 19 № 502119

Даны n различных натуральных чисел, составляющих арифметическую прогрессию

 

а) Может ли сумма всех данных чисел быть равной 10?

б) Каково наибольшее значение n, если сумма всех данных чисел меньше 1000?

в) Найдите все возможные значения n, если сумма всех данных чисел равна 129.


Аналоги к заданию № 502119: 502139 501512 Все

Источник: ЕГЭ по ма­те­ма­ти­ке 23.04.2013. До­сроч­ная волна. Ва­ри­ант 901.

8
Задание 19 № 505245

Целое число S является суммой не менее трех последовательных членов непостоянной арифметической прогрессии, состоящей из целых чисел.

а) Может ли S равняться 8?

б) Может ли S равняться 1?

в) Найдите все значения, которые может принимать S.


Аналоги к заданию № 505245: 505251 Все

Источник: ЕГЭ по ма­те­ма­ти­ке 08.05.2014. До­сроч­ная волна, ре­зерв­ный день. Ва­ри­ант 1.

9
Задание 19 № 485960

В возрастающей последовательности натуральных чисел каждые три последовательных члена образуют либо арифметическую, либо геометрическую прогрессию. Первый член последовательности равен 1, а последний 2076.

а) может ли в последовательности быть три члена?

б) может ли в последовательности быть четыре члена?

в) может ли в последовательности быть меньше 2076 членов?


Аналоги к заданию № 485960: 507487 Все

Источник:
Решение · ·

10
Задание 19 № 500217

Число таково, что для любого представления в виде суммы положительных слагаемых, каждое из которых не превосходит эти слагаемые можно разделить на две группы так, что каждое слагаемое попадает только в одну группу и сумма слагаемых в каждой группе не превосходит

а) Может ли число быть равным

б) Может ли число быть больше

в) Найдите максимально возможное значение


Аналоги к заданию № 500217: 500391 Все

Источник: ЕГЭ 10.07.2012 по математике. Вто­рая волна. Ва­ри­ант 501.

11
Задание 19 № 485958

Можно ли привести пример пяти различных натуральных чисел, произведение которых равно 1512 и

а) пять;

б) четыре;

в) три

из них образуют геометрическую прогрессию?


Аналоги к заданию № 485958: 507226 507626 Все

Источник: И. В. Яковлев: Материалы по математике 2011 год
Решение · ·

12
Задание 19 № 505539

Все члены конечной последовательности являются натуральными числами. Каждый член этой последовательности, начиная со второго, либо в 10 раз больше, либо в 10 раз меньше предыдущего. Сумма всех членов последовательности равна 3024.

а) Может ли последовательность состоять из двух членов?

б) Может ли последовательность состоять из трёх членов?

в) Какое наибольшее количество членов может быть в последовательности?

Решение · ·

13
Задание 19 № 513433

Бесконечная арифметическая прогрессия a1, a2, ..., an, ... состоит из различных натуральных чисел.

а) Существует ли такая прогрессия, в которой среди чисел a1, a2, ..., a7 ровно три числа делятся на 100?

б) Существует ли такая прогрессия, в которой среди чисел a1, a2, ..., a49 ровно 11 чисел делятся на 100?

в) Для какого наибольшего натурального n могло оказаться так, что среди чисел a1, a2, ..., a2n больше кратных 100, чем среди чисел a2n + 1, a2n + 2, ..., a5n?


Аналоги к заданию № 513433: 513452 Все


14
Задание 19 № 514525

Последовательность состоит из натуральных чисел, причём каждый член последовательности больше среднего арифметического соседних (стоящих рядом с ним) членов.

а) Приведите пример такой последовательности, состоящей из четырёх членов, сумма которых равна 50.

б) Может ли такая последовательность состоять из шести членов и содержать два одинаковых числа?

в) Какое наименьшее значение может принимать сумма членов такой последовательности при n = 10?

Источник: За­да­ния 19 (С7) ЕГЭ 2016, ЕГЭ по математике 06.06.2016. Ос­нов­ная волна. Вариант 512 (C часть).

15
Задание 19 № 514608

На доске написано 30 чисел: десять «5», десять «4» и десять «3». Эти числа разбивают на две группы, в каждой из которых есть хотя бы одно число. Среднее арифметическое чисел в первой группе равно А, среднее арифметическое чисел во второй группе равно В. (Для группы из единственного числа среднее арифметическое равно этому числу.)

а) Приведите пример разбиения исходных чисел на две группы, при котором среднее арифметическое всех чисел меньше

б) Докажите, что если разбить исходные числа на две группы по 15 чисел, то среднее арифметическое всех чисел будет равно

в) Найдите наибольшее возможное значение выражения


Аналоги к заданию № 514608: 514560 514615 Все

Источник: За­да­ния 19 (С7) ЕГЭ 2016, ЕГЭ по математике 06.06.2016. Ос­нов­ная волна. Вариант 601 (C часть).

16
Задание 19 № 514615

На доске написано 24 числа: восемь «5», восемь «4» и восемь «3». Эти числа разбивают на две группы, в каждой из которых есть хотя бы одно число. Среднее арифметическое чисел в первой группе равно А, среднее арифметическое чисел во второй группе равно В. (Для группы из единственного числа среднее арифметическое равно этому числу.)

а) Приведите пример разбиения исходных чисел на две группы, при котором среднее арифметическое всех чисел меньше

б) Докажите, что если разбить исходные числа на две группы по 12 чисел, то среднее арифметическое всех чисел будет равно

в) Найдите наибольшее возможное значение выражения


17
Задание 19 № 514629

Последовательность состоит из неотрицательных однозначных чисел. Пусть — среднее арифметическое всех членов этой последовательности, кроме k-го. Известно, что M1 = 1, M2 = 2.

а) приведите пример такой последовательности, для которой M3 = 1,5.

б) существует ли такая последовательность, для которой M3 = 3?

в) Найдите наибольшее возможное значение M3.


Аналоги к заданию № 514629: 514643 517778 Все

Источник: ЕГЭ по математике 06.06.2016. Ос­нов­ная волна. Вариант 701 (C часть).

18
Задание 19 № 515692

Конечная последовательность состоит из не обязательно различных натуральных чисел, причём при всех натуральных выполнено равенство

а) Приведите пример такой последовательности при n = 5, в которой a5 = 4.

б) Может ли в такой последовательности некоторое натуральное число встретиться три раза?

в) При каком наибольшем n такая последовательность может состоять только из трёхзначных чисел?

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2017. Вариант 3. (Часть C).

19
Задание 19 № 515730

Конечная возрастающая последовательность состоит из необязательно различных натуральных чисел, причём при всех натуральных выполнено равенство

а) Приведите пример такой последовательности при n = 4.

б) Может ли в такой последовательности при некотором выполняться равенство

в) Какое наименьшее значение может принимать a1, если an = 667?


Аналоги к заданию № 515730: 516261 516280 Все

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2017. Вариант 5. (Часть C).

20
Задание 19 № 515831

Возрастающая конечная арифметическая прогрессия состоит из различных целых неотрицательных чисел. Математик вычислил разность между квадратом суммы всех членов прогрессии и суммой их квадратов. Затем математик добавил к этой прогрессии следующий её член и снова вычислил такую же разность.

а) Приведите пример такой прогрессии, если во второй раз разность оказалась на 48 больше, чем в первый раз.

б) Во второй раз разность оказалась на 1440 больше, чем в первый раз. Могла ли прогрессия сначала состоять из 12 членов?

в) Во второй раз разность оказалась на 1440 больше, чем в первый раз. Какое наибольшее количество членов могло быть в прогрессии сначала?


21
Задание 19 № 516280

Конечная возрастающая последовательность состоит из различных натуральных чисел, причём при всех натуральных выполнено равенство

а) Приведите пример такой последовательности при

б) Может ли в такой последовательности при некотором выполняться равенство

в) Какое наименьшее значение может принимать , если ?


22
Задание 19 № 516337

Возрастающие арифметические прогрессии и состоят из натуральных чисел.

а) Существуют ли такие прогрессии, для которых ?

б) Существуют ли такие прогрессии, для которых ?

в) Какое наибольшее значение может принимать произведение , если ?


Аналоги к заданию № 516337: 516304 517186 517224 Все


23
Задание 19 № 517778

Последовательность состоит из неотрицательных однозначных чисел. Пусть — среднее арифметическое всех членов этой последовательности, кроме k-го. Известно, что

а) Приведите пример такой последовательности, для которой

б) Существует ли такая последовательность, для которой

в) Найдите наименьшее возможное значение

Решение · ·

24
Задание 19 № 520501

Последовательность a1, a2, ...,an,... состоит из натуральных чисел, причем an+2 = an+1 + an при всех натуральных n.

а) Может ли выполняться равенство 4a5 = 7a4?

б) Может ли выполняться равенство 5a5 = 7a4?

в) При каком наибольшем натуральном n может выполняться равенство


Аналоги к заданию № 520501: 520521 520664 520705 520686 Все


Пройти тестирование по этим заданиям