Вариант № 9852269

ЕГЭ по математике 28.03.2016. Досрочная волна, вариант 2 (часть 2)

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1

а)  Ре­ши­те урав­не­ние 8 в сте­пе­ни x минус 7 умно­жить на 4 в сте­пе­ни x минус 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка плюс 112=0.

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка ло­га­рифм по ос­но­ва­нию 2 5; ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка 11 пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

2

В пра­виль­ной четырёхуголь­ной приз­ме ABCDA1B1C1D1 сто­ро­на ос­но­ва­ния AB = 6, а бо­ко­вое ребро AA_1=4 ко­рень из 3 . На рёбрах AB, A1D1 и C1D1 от­ме­че­ны точки M, N и K со­от­вет­ствен­но, причём AM  =  A1N  =  C1K  =  1.

а)  Пусть L  — точка пе­ре­се­че­ния плос­ко­сти MNK с реб­ром BC. До­ка­жи­те, что MNKL  — квад­рат.

б)  Най­ди­те пло­щадь се­че­ния приз­мы плос­ко­стью MNK.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

3

Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

4

Точка O  — центр окруж­но­сти, опи­сан­ной около ост­ро­уголь­но­го тре­уголь­ни­ка ABC, I  — центр впи­сан­ной в него окруж­но­сти, H  — точка пе­ре­се­че­ния высот. Из­вест­но, что \angle BAC=\angle OBC плюс \angle OCB.

а)  До­ка­жи­те, что точка I лежит на окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка BOC.

б)  Най­ди­те угол OIH, если \angle ABC=55 гра­ду­сов.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Тип 16 № 513628
i

Вклад пла­ни­ру­ет­ся от­крыть на че­ты­ре года. Пер­во­на­чаль­ный вклад со­став­ля­ет целое число мил­ли­о­нов руб­лей. В конце каж­до­го года вклад уве­ли­чи­ва­ет­ся на 10% по срав­не­нию с его раз­ме­ром в на­ча­ле года, а, кроме этого, в на­ча­ле тре­тье­го и четвёртого годов вклад еже­год­но по­пол­ня­ет­ся на 3 млн руб­лей. Най­ди­те наи­боль­ший раз­мер пер­во­на­чаль­но­го вкла­да, при ко­то­ром через че­ты­ре года вклад будет мень­ше 25 млн руб­лей.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

6

Най­ди­те все зна­че­ния a, при каж­дом из ко­то­рых си­сте­ма урав­не­ний

 си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: xy в квад­ра­те минус 3xy минус 3y плюс 9, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 3 конец ар­гу­мен­та конец дроби =0,y=ax конец си­сте­мы .

имеет ровно два раз­лич­ных ре­ше­ния.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

7
Тип 19 № 513630
i

Мно­же­ство чисел назовём хо­ро­шим, если его можно раз­бить на два под­мно­же­ства с оди­на­ко­вой сум­мой чисел.

а)  Яв­ля­ет­ся ли мно­же­ство {200; 201; 202; ...; 299} хо­ро­шим?

б)  Яв­ля­ет­ся ли мно­же­ство {2; 4; 8; ...; 2100} хо­ро­шим?

в)  Сколь­ко хо­ро­ших четырёхэле­мент­ных под­мно­жеств у мно­же­ства {1; 2; 4; 5; 7; 9; 11}?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.