Заголовок: ЕГЭ по математике 21.06.2024. Основная волна, резервный день. Санкт-Петербург. Вариант 502
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — математика профильная
Вариант № 77126365

ЕГЭ по математике 21.06.2024. Основная волна, резервный день. Санкт-Петербург. Вариант 502

1.  
i

а)  Ре­ши­те урав­не­ние 3 тан­генс в квад­ра­те x минус дробь: чис­ли­тель: 5, зна­ме­на­тель: ко­си­нус x конец дроби плюс 5 = 0.

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус 3 Пи ; минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

2.  
i

Ос­но­ва­ни­ем четырёхуголь­ной пи­ра­ми­ды SABCD яв­ля­ет­ся пря­мо­уголь­ник со сто­ро­на­ми AB  =  24 и BC  =  7. Бо­ко­вые ребра SA= ко­рень из: на­ча­ло ар­гу­мен­та: 51 конец ар­гу­мен­та ,  SB= ко­рень из: на­ча­ло ар­гу­мен­та: 627 конец ар­гу­мен­та и SD  =  10.

а)  До­ка­жи­те, что SA  — вы­со­та пи­ра­ми­ды.

б)  Най­ди­те угол между пря­мы­ми SC и BD.

4.  
i

В июле пла­ни­ру­ет­ся взять кре­дит в банке на сумму 18 млн руб­лей на не­ко­то­рый срок (целое число лет). Усло­вия его воз­вра­та та­ко­вы:

  — каж­дый ян­варь долг воз­рас­та­ет на 10% по срав­не­нию с кон­цом преды­ду­ще­го года;

  — с фев­ра­ля по июнь каж­до­го года не­об­хо­ди­мо вы­пла­тить часть долга;

  — в июле каж­до­го года долг дол­жен быть на одну и ту же сумму мень­ше долга на июль преды­ду­ще­го года.

На сколь­ко лет пла­ни­ру­ет­ся взять кре­дит, если из­вест­но, что общая сумма вы­плат после его пол­но­го по­га­ше­ния со­ста­вит 27 млн руб­лей?

5.  
i

В ост­ро­уголь­ном тре­уголь­ни­ке ABC про­ве­де­ны вы­со­ты AK и CM. На них из точек M и K опу­ще­ны пер­пен­ди­ку­ля­ры ME и KH со­от­вет­ствен­но.

а)  До­ка­жи­те, что пря­мые EH и AC па­рал­лель­ны.

б)  Най­ди­те от­но­ше­ние EH и AC, если \angle ABC = 45 гра­ду­сов.

6.  
i

Най­ди­те все зна­че­ния па­ра­мет­ра a, при каж­дом из ко­то­рых урав­не­ние

 левая круг­лая скоб­ка 1 минус левая круг­лая скоб­ка x плюс a плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те пра­вая круг­лая скоб­ка в кубе минус левая круг­лая скоб­ка 1 минус левая круг­лая скоб­ка x плюс a плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те пра­вая круг­лая скоб­ка в квад­ра­те = 2 в сте­пе­ни левая круг­лая скоб­ка 3|x минус a| пра­вая круг­лая скоб­ка минус 2 в сте­пе­ни левая круг­лая скоб­ка 2|x минус a| пра­вая круг­лая скоб­ка

имеет хотя бы одно ре­ше­ние.

7.  
i

На доске на­пи­са­ли не­сколь­ко не обя­за­тель­но раз­лич­ных дву­знач­ных на­ту­раль­ных чисел без нулей в де­ся­тич­ной за­пи­си. Сумма этих чисел ока­за­лась рав­ной 1782. Затем в каж­дом числе по­ме­ня­ли ме­ста­ми первую и вто­рую цифры (на­при­мер, число 17 за­ме­ни­ли на число 71).

а)  При­ве­ди­те при­мер ис­ход­ных чисел, для ко­то­рых сумма по­лу­чив­ших­ся чисел ровно в 3 раза боль­ше, чем сумма ис­ход­ных чисел.

б)  Могла ли сумма по­лу­чив­ших­ся чисел быть ровно в 5,5 раз боль­ше, чем сумма ис­ход­ных чисел?

в)  Най­ди­те наи­боль­шее воз­мож­ное зна­че­ние суммы по­лу­чив­ших­ся чисел.