В школах № 1 и № 2 учащиеся писали тест. Из каждой школы тест писали по крайней мере два учащихся, а суммарно тест писали 9 учащихся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. Оказалось, что в каждой школе средний балл был целым числом. После этого, один из учащихся, писавших тест, перешел из школы № 1 в школу № 2, а средние баллы за тест были пересчитаны в обеих школах.
а) Мог ли средний балл в школе № 1 уменьшиться
б) Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Мог ли первоначальный средний балл в школе № 2 равняться 7?
в) Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Найдите наименьшее значение первоначального среднего балла в школе № 2.
а) Пусть в школе № 1 писали тест два учащихся, один из них набрал 1 балл, а второй набрал 19 баллов и перешёл в школу № 2. Тогда средний балл в школе № 1 уменьшился в 10 раз.
б) Пусть в школе № 2 писали тест m учащихся, средний балл равнялся B, а прошедший в неё учащийся набрал u баллов. Тогда получаем:
Если B = 7, то не делится на 10, а 10u делится на 10. Но это невозможно, поскольку
в) Пусть в школе № 1 средний балл равнялся A. Тогда получаем:
Заметим, что если B = 1 или B = 3, то не делится на 10. Если B = 2 или B = 4, то m = 4. В первом случае 14A = 10, а во втором 14A = 20. Значит,ни один из этих случаев не возможен.
При B = 5 и m = 3 получаем u = 3 и A = 2. Этот случай реализуется, например, если в школе № 1 писали тест 6 учащихся, 3 из них набрали по 1 баллу, а 3 — по 3 балла, в школе № 2 писали тест 3 учащихся и каждый набрал по 5 баллов, а у перешедшего из одной школы в другую учащегося 3 балла.
Ответ: а) да; б) нет; в) 5.
-------------
Дублирует задание № 520884.Спрятать критерии

