Вариант № 40332154

ЕГЭ по математике 07.06.2021. Основная волна. Санкт-Петербург, Москва, другие города. Вариант 359 (часть 2)

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип 13 № 563653
i

a)  Ре­ши­те урав­не­ние 2 синус x ко­си­нус в квад­ра­те x минус ко­рень из 2 синус 2x плюс синус x = 0.

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус 4 Пи ; минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Тип 14 № 563654
i

В ос­но­ва­нии тре­уголь­ной пи­ра­ми­ды SABC лежит пря­мо­уголь­ный тре­уголь­ник ABC с пря­мым углом C. Ос­но­ва­ние вы­со­ты SO этой пи­ра­ми­ды яв­ля­ет­ся се­ре­ди­ной ребра AB.

а)  До­ка­жи­те, что SA  =  SC.

б)  Най­ди­те угол между плос­ко­стя­ми SAC и ABC, если AC  =  16, AB  =  20, SA  =  26.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

3

Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Тип 17 № 563656
i

От­ре­зок CH  — вы­со­та пря­мо­уголь­но­го тре­уголь­ни­ка ABC с пря­мым углом C. На ка­те­тах AC и BC вы­бра­ны точки M и N со­от­вет­ствен­но такие, что \angle MHN = 90 гра­ду­сов.

a) До­ка­жи­те, что тре­уголь­ник MNH по­до­бен тре­уголь­ни­ку ABC.

б)  Най­ди­те CN, если BC  =  3, AC  =  5, CM  =  2.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

5

15 ян­ва­ря 2025 года пла­ни­ру­ет­ся взять кре­дит в банке на сумму 900 тысяч руб­лей на 31 месяц. Усло­вия его воз­вра­та та­ко­вы:

  — 1-го числа каж­до­го ме­ся­ца долг уве­ли­чи­ва­ет­ся на 2% по срав­не­нию с кон­цом преды­ду­ще­го ме­ся­ца;

  — со 2-го по 14-е число каж­до­го ме­ся­ца не­об­хо­ди­мо вы­пла­тить часть долга;

  — 15-го числа каж­до­го ме­ся­ца с 1-го по 30-й (с фев­ра­ля 2025 года по июль 2027 года вклю­чи­тель­но) долг дол­жен быть на одну и ту же ве­ли­чи­ну мень­ше долга на 15-е число преды­ду­ще­го ме­ся­ца;

  — 15 июля 2027 года долг со­ста­вит 300 тысяч руб­лей;

  — 15 ав­гу­ста 2027 года кре­дит дол­жен быть по­га­шен пол­но­стью.

Най­ди­те общую сумму вы­плат после пол­но­го по­га­ше­ния кре­ди­та.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Тип 18 № 563658
i

Най­ди­те все зна­че­ния a, при каж­дом из ко­то­рых урав­не­ние

 a|x плюс 2| плюс левая круг­лая скоб­ка 1 минус a пра­вая круг­лая скоб­ка |x минус 2| плюс 3=0

имеет ровно два раз­лич­ных корня.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

7
Тип 19 № 563659
i

Дано трех­знач­ное на­ту­раль­ное число, не крат­ное 100.

а)  Может ли част­ное этого числа и суммы его цифр быть рав­ным 13?

б)  Может ли част­ное этого числа и суммы его цифр быть рав­ным 6?

в)  Какое наи­боль­шее на­ту­раль­ное зна­че­ние может иметь част­ное дан­но­го числа и суммы его цифр, если пер­вая цифра дан­но­го числа равна 6?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.