ЕГЭ по математике 07.06.2021. Основная волна. Санкт-Петербург, Москва, другие города. Вариант 359 (часть 2)
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
a) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
В основании треугольной пирамиды SABC лежит прямоугольный треугольник ABC с прямым углом C. Основание высоты SO этой пирамиды является серединой ребра AB.
а) Докажите, что SA = SC.
б) Найдите угол между плоскостями SAC и ABC, если AC = 16, AB = 20, SA = 26.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство:
На следующей странице вам будет предложено проверить их самостоятельно.
Отрезок CH — высота прямоугольного треугольника ABC с прямым углом C. На катетах AC и BC выбраны точки M и N соответственно такие, что
a) Докажите, что треугольник MNH подобен треугольнику ABC.
б) Найдите CN, если BC = 3, AC = 5, CM = 2.
На следующей странице вам будет предложено проверить их самостоятельно.
15 января 2025 года планируется взять кредит в банке на сумму 900 тысяч рублей на 31 месяц. Условия его возврата таковы:
— 1-го числа каждого месяца долг увеличивается на 2% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по 30-й (с февраля 2025 года по июль 2027 года включительно) долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца;
— 15 июля 2027 года долг составит 300 тысяч рублей;
— 15 августа 2027 года кредит должен быть погашен полностью.
Найдите общую сумму выплат после полного погашения кредита.
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения a, при каждом из которых уравнение
имеет ровно два различных корня.
На следующей странице вам будет предложено проверить их самостоятельно.
Дано трехзначное натуральное число, не кратное 100.
а) Может ли частное этого числа и суммы его цифр быть равным 13?
б) Может ли частное этого числа и суммы его цифр быть равным 6?
в) Какое наибольшее натуральное значение может иметь частное данного числа и суммы его цифр, если первая цифра данного числа равна 6?
На следующей странице вам будет предложено проверить их самостоятельно.