Демонстрационная версия ЕГЭ—2024 по математике. Профильный уровень.
В демонстрационном варианте представлены конкретные примеры заданий, не исчерпывающие всего многообразия возможных формулировок заданий на каждой позиции варианта экзаменационной работы.
В демонстрационном варианте представлено по несколько примеров заданий на некоторых позициях экзаменационной работы. В реальных вариантах экзаменационной работы на каждой позиции будет предложено только одно задание.
Версия для печати и копирования в MS Word
| Время | |
| Прошло | 0:00:00 |
| Осталось | 3:55:00 |
Треугольник ABC вписан в окружность с центром O. Найдите угол BOC, если угол BAC равен 32°.
ИЛИ
Площадь треугольника ABC равна 24, DE — средняя линия, параллельная стороне AB. Найдите площадь треугольника CDE.
ИЛИ
В ромбе ABCD угол DBA равен 13°. Найдите угол BCD. Ответ дайте в градусах.
ИЛИ
Стороны параллелограмма равны 24 и 27. Высота, опущенная на меньшую из этих сторон, равна 18. Найдите высоту, опущенную на бо́льшую сторону параллелограмма.
Ответ:
На координатной плоскости изображены векторы и
Найдите скалярное произведение
ИЛИ
Даны векторы
и
Найдите длину вектора
Ответ:
В цилиндрическом сосуде уровень жидкости достигает 16 см. На какой высоте будет находиться уровень жидкости, если ее перелить во второй сосуд, диаметр которого в
ИЛИ
Площадь боковой поверхности треугольной призмы равна 24. Через среднюю линию основания призмы проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности отсечённой треугольной призмы.
ИЛИ
Через точку, лежащую на высоте прямого кругового конуса и делящую её в отношении 1 : 2, считая от вершины конуса, проведена плоскость, параллельная его основанию и делящая конус на две части. Каков объём той части конуса, которая примыкает к его основанию, если объём всего конуса
Ответ:
В сборнике билетов по биологии всего 25 билетов. Только в двух билетах встречается вопрос о грибах. На экзамене школьнику достаётся один случайно выбранный билет из этого сборника. Найдите вероятность того, что в этом билете будет вопрос о грибах.
ИЛИ
Вероятность того, что мотор холодильника прослужит более 1 года, равна 0,8, а вероятность того, что он прослужит более 2 лет, равна 0,6. Какова вероятность того, что мотор прослужит более 1 года, но не более 2 лет?
Ответ:
Симметричную игральную кость бросили
ИЛИ
В городе 48 % взрослого населения — мужчины. Пенсионеры составляют 12,6 % взрослого населения, причём доля пенсионеров среди женщин равна 15 %. Для социологического опроса выбран случайным образом мужчина, проживающий в этом городе. Найдите вероятность события «выбранный мужчина является пенсионером».
Ответ:
Найдите корень уравнения:
ИЛИ
Найдите корень уравнения
ИЛИ
Найдите корень уравнения
ИЛИ
Решите уравнение Если уравнение имеет более одного корня, в ответе запишите меньший из корней.
Ответ:
Найдите если
и
ИЛИ
Найдите значение выражения:
ИЛИ
Найдите значение выражения:
Ответ:
На рисунке изображён график дифференцируемой функции y = f(x). На оси абсцисс отмечены девять точек: x1, x2, ..., x9. Среди этих точек найдите все точки, в которых производная функции y = f(x) отрицательна. В ответе укажите количество найденных точек.
ИЛИ
На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x0 . Найдите значение производной функции f(x) в точке x0.
Ответ:
Локатор батискафа, равномерно погружающегося вертикально вниз, испускает ультразвуковые импульсы частотой 749 МГц. Скорость погружения батискафа вычисляется по формуле где
м/с
— частота испускаемых импульсов, f — частота отражённого от дна сигнала, регистрируемая приёмником
Ответ:
Весной катер идёт против течения реки в раза
раза
ИЛИ
Смешав 45-процентный и 97-процентный растворы кислоты и добавив 10 кг чистой воды, получили 62-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 72-процентный раствор кислоты. Сколько килограммов 45-процентного раствора использовали для получения смеси?
ИЛИ
Автомобиль, движущийся с постоянной скоростью 70 км/ч по прямому шоссе, обгоняет другой автомобиль, движущийся в ту же сторону с постоянной скоростью 40 км/ч. Каким будет расстояние (в километрах) между этими автомобилями через
Ответ:
На рисунке изображён график функции вида где числа a, b и c — целые. Найдите
Ответ:
Найдите наименьшее значение функции на отрезке
ИЛИ
Найдите точку максимума функции
ИЛИ
Найдите точку минимума функции
Ответ:
а) Решите уравнение:
б) Определите, какие из его корней принадлежат отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
В пирамиде ABCD рёбра DA, DB и DC попарно перпендикулярны, а
а) Докажите, что BD = CD.
б) На рёбрах DA и DC отмечены точки M и N соответственно, причём DM : MA = DN : NC = 2 : 3. Найдите площадь сечения MNB.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
В июле 2025 года планируется взять кредит в банке на сумму 800 тысяч рублей на 10 лет. Условия его возврата таковы:
— каждый январь долг возрастает на r% по сравнению с концом предыдущего года (r — целое число);
— с февраля по июнь необходимо выплатить часть долга;
— в июле 2026, 2027, 2028, 2029, 2030 годов долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года;
— в июле 2030 года долг должен составлять 200 тыс. руб.;
— в июле 2031, 2032, 2033, 2034, 2035 годов долг должен быть на другую одну и ту же сумму меньше долга на июль предыдущего года;
— к июлю 2035 года долг должен быть полностью погашен.
Найдите r, если общая сумма выплат по кредиту составила 1480 тыс. руб.
На следующей странице вам будет предложено проверить их самостоятельно.
Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй —
а) Докажите, что прямые AD и BC параллельны.
б) Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все положительные значения a , при каждом из которых система
имеет единственное решение.
На следующей странице вам будет предложено проверить их самостоятельно.
Из пары натуральных чисел (a; b), где за один ход получают пару (a + b; a – b).
а) Можно ли за несколько таких ходов получить из пары (100; 1) пару, большее число в которой равно 400?
б) Можно ли за несколько таких ходов получить из пары (100; 1) пару (806; 788)?
в) Какое наименьшее a может быть в паре (a; b), из которой за несколько ходов можно получить пару (806; 788)?
На следующей странице вам будет предложено проверить их самостоятельно.