В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки А и В, а на окружности другого основания — точки В1 и С1, причем ВВ1 — образующая цилиндра, а отрезок АС1 пересекает ось цилиндра.
а) Докажите, что угол АВС1 прямой.
б) Найдите расстояние от точки B до прямой AC1, если AB = 21, BB1 = 12, B1C1 = 16.
а) Рассмотрим плоскость, проходящую через ось цилиндра и прямую АС1. Обозначим точку пересечения этой плоскости и окружности основания цилиндра, содержащую точку А, через точку С. Тогда СС1 — образующая цилиндра. Отрезок АС пересекает ось цилиндра. Значит, он проходит через центр окружности основания цилиндра, то есть является ее диаметром. Следовательно, угол АВС прямой.
Прямая СС1 является образующей цилиндра, поэтому она перпендикулярна прямой АВ. Таким образом, прямая АВ перпендикулярна двум пересекающимся прямым, лежащим в плоскости ВСС1 (BС и СС1), а значит, прямая АВ перпендикулярна плоскости ВСС1 и любой прямой, лежащей в этой плоскости. Значит, угол АВС1 прямой.
б) Треугольник ABC1 прямоугольный, поэтому искомое расстояние равно его высоте h, проведённой к гипотенузе. Получаем:
Ответ: б)
Приведем другое решение пункта а).
Введем систему координат, как показано на рисунке. Пусть а радиус основания равен r. Найдем координаты точек A, B и C1:
Найдем координаты векторов и
Тогда скалярное произведение равно:
Значит, угол АВС1 прямой.

