Вариант № 15061254

ЕГЭ по математике 28.06.2017. Основная волна, резервный день. Вариант 992 (часть 2)

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1

а)  Ре­ши­те урав­не­ние  ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x в квад­ра­те минус 2x пра­вая круг­лая скоб­ка =1.

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка ло­га­рифм по ос­но­ва­нию 2 0,2; ло­га­рифм по ос­но­ва­нию 2 5 пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

2

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де SABCD все ребра равны 5. На реб­рах SA, AB, BC взяты точки P, Q, R со­от­вет­ствен­но так, что PA=AQ=RC=2.

а)  До­ка­жи­те, что плос­кость PQR пер­пен­ди­ку­ляр­на ребру SD.

б)  Най­ди­те рас­сто­я­ние от вер­ши­ны D до плос­ко­сти PQR.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

3

Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Тип 17 № 517758
i

В тра­пе­цию ABCD с ос­но­ва­ни­я­ми AD и BC впи­са­на окруж­ность с цен­тром O.

а)  До­ка­жи­те, что  синус \angle AOD= синус \angle BOC.

б)  Най­ди­те пло­щадь тра­пе­ции, если \angle BAD=90 гра­ду­сов, а ос­но­ва­ния равны 5 и 7.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

5

В июле 2016 года пла­ни­ру­ет­ся взять кре­дит в банке на че­ты­ре года в раз­ме­ре S млн руб­лей, где S  — на­ту­раль­ное число. Усло­вия его воз­вра­та та­ко­вы:

  — каж­дый ян­варь долг уве­ли­чи­ва­ет­ся на 25% по срав­не­нию с кон­цом преды­ду­ще­го года;

  — с фев­ра­ля по июнь каж­до­го года не­об­хо­ди­мо вы­пла­тить часть долга;

  — в июле каж­до­го года долг дол­жен со­став­лять часть кре­ди­та в со­от­вет­ствии со сле­ду­ю­щей таб­ли­цей.

 

Месяц и годИюль 2016Июль 2017Июль 2018Июль 2019Июль 2020
Долг (в млн руб­лей)S0,7S0,5S0,3S0

 

Най­ди­те наи­мень­шее зна­че­ние S, при ко­то­ром общая сумма вы­плат будет со­став­лять целое число мил­ли­о­нов руб­лей.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Тип 18 № 517802
i

Най­ди­те все зна­че­ния a, при каж­дом из ко­то­рых си­сте­ма урав­не­ний

 си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка y в квад­ра­те минус xy плюс x минус 3y плюс 2 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 3 конец ар­гу­мен­та =0,a минус x минус y=0 конец си­сте­мы .

имеет ровно два раз­лич­ных ре­ше­ния.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

7
Тип 19 № 517778
i

По­сле­до­ва­тель­ность a_1, a_2, ..., a_6 со­сто­ит из не­от­ри­ца­тель­ных од­но­знач­ных чисел. Пусть Mk  — сред­нее ариф­ме­ти­че­ское всех чле­нов этой по­сле­до­ва­тель­но­сти, кроме k-го. Из­вест­но, что M_1=7, M_2=6.

а)  При­ве­ди­те при­мер такой по­сле­до­ва­тель­но­сти, для ко­то­рой M_3=6,4.

б)  Су­ще­ству­ет ли такая по­сле­до­ва­тель­ность, для ко­то­рой M_3=5?

в)  Най­ди­те наи­мень­шее воз­мож­ное зна­че­ние M_3.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.