СДАМ ГИА






Каталог заданий. Задача на доказательство и вычисление
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Задание 16 № 501887

Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй — в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.

а) Докажите, что прямые AD и BC параллельны.

б) Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны 4 и 1.

Источник: Де­мон­стра­ци­он­ная вер­сия ЕГЭ—2018 по математике. Про­филь­ный уровень., Проект демонстрационной версии ЕГЭ—2014 по математике.

2
Задание 16 № 505501

В треугольнике АВС проведена биссектриса АМ. Прямая, проходящая через вершину В перпендикулярно АМ, пересекает сторону АС в точке N. АВ = 6; ВС = 5; АС = 9.

а) докажите, что биссектриса угла С делит отрезок МN пополам

б) пусть Р — точка пересечения биссектрис треугольника АВС. Найдите отношение АР : РN.

Источник: ЕГЭ по ма­те­ма­ти­ке 19.06.2014. Основная волна, ре­зерв­ный день. Запад. Ва­ри­ант 1.

3
Задание 16 № 507211

Две окружности касаются внутренним образом. Третья окружность касается первых двух и их линии центров.

а) Докажите, что периметр треугольника с вершинами в центрах трёх окружностей равен диаметру наибольшей из этих окружностей.

б) Найдите радиус третьей окружности, если известно, что радиусы первых двух равны 6 и 2.


Аналоги к заданию № 507211: 507237 515670 Все

Решение · ·

4
Задание 16 № 507262

Диагональ AC прямоугольника ABCD с центром O образует со стороной AB угол 30°. Точка E лежит вне прямоугольника, причём ∠BEC = 120°.

а) Докажите, что ∠CBE = ∠COE.

б) Прямая OE пересекает сторону AD прямоугольника в точке K. Найдите EK, если известно, что BE = 40 и CE = 24.


Аналоги к заданию № 507262: 511418 Все


5
Задание 16 № 507510

Медианы AA1, BB1 и CC1 треугольника ABC пересекаются в точке M. Точки A2, B2 и C2 — середины отрезков MA, MB и MC соответственно.

а) Докажите, что площадь шестиугольника A1B2C1A2B1C2 вдвое меньше площади треугольника ABC.

б) Найдите сумму квадратов всех сторон этого шестиугольника, если известно, что AB = 5, BC = 8 и AC = 10.


Аналоги к заданию № 507510: 511440 Все

Источник: МИОО: Ди­а­гно­сти­че­ская ра­бо­та по ма­те­ма­ти­ке 12.12.2013 с решениями: ва­ри­ант МА10301 (Часть С).

6
Задание 16 № 507586

Медианы AA1, BB1 и CC1 треугольника ABC пересекаются в точке M. Точки A2, B2 и C2 — середины отрезков MA, MB и MC соответственно.

а) Докажите, что площадь шестиугольника A1B2C1A2B1C2 вдвое меньше площади треугольника ABC.

б) Найдите сумму квадратов всех сторон этого шестиугольника, если известно, что AB = 4, BC = 7 и AC = 8.

Источник: МИОО: Ди­а­гно­сти­че­ская ра­бо­та по ма­те­ма­ти­ке 12.12.2013 с решениями: ва­ри­ант МА10302 (Часть С).

7
Задание 16 № 507889

Хорды AD, BE и CF окружности делят друг друга на три равные части.

а) Докажите, что эти хорды равны.

б) Найдите площадь шестиугольника ABCDEF, если точки A, B, C, D, E последовательно расположены на окружности, а радиус окружности равен


Аналоги к заданию № 507889: 507912 511502 Все

Источник: СтатГрад: Ди­а­гно­сти­че­ская ра­бо­та по ма­те­ма­ти­ке 21.01.2015 ва­ри­ант МА10109.

8
Задание 16 № 508235

В остроугольном треугольнике ABC проведены высоты AP и CQ.

а) Докажите, что угол PAC равен углу PQC.

б) Найдите радиус окружности, описанной около треугольника ABC, если известно, что PQ = 8 и ∠ABC = 60°.


Аналоги к заданию № 508235: 509066 511508 511587 509045 Все

Источник: Пробный эк­за­мен Санкт-Петербург 2015. Вариант 1.

9
Задание 16 № 508256

В остроугольном треугольнике KMN проведены высоты KB и NA.

а) Докажите, что угол ABK равен углу ANK.

б) Найдите радиус окружности, описанной около треугольника ABM, если известно, что и ∠KMN = 45°.


Аналоги к заданию № 508256: 511509 Все

Источник: Проб­ный эк­за­мен Санкт-Петербург 2015. Ва­ри­ант 2.

10
Задание 16 № 508974

Медианы AA1, BB1 и CC1 треугольника ABC пересекаются в точке M. Известно, что AC = 3MB.

а) Докажите, что треугольник ABC прямоугольный.

б) Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 12.


Аналоги к заданию № 508974: 509003 Все

Источник: СтатГрад: Ди­а­гно­сти­че­ская ра­бо­та по ма­те­ма­ти­ке 05.03.2015 ва­ри­ант МА10309.
Решение · ·

11
Задание 16 № 509094

Точка О — центр окружности, вписанной в треугольник ABC. На продолжении отрезка AO за точку О отмечена точка K так, что BK = OK.

а) Докажите, что четырехугольник ABKC вписанный.

б) Найдите длину отрезка AO, если известно, что радиусы вписанной и описанной окружностей треугольника ABC равны 3 и 12 соответственно, а OK = 5.


Аналоги к заданию № 509094: 511589 511592 Все

Источник: Проб­ный эк­за­мен по ма­те­ма­ти­ке Кировского района Санкт-Петербурга, 2015. Ва­ри­ант 1.

12
Задание 16 № 509123

Точка О — центр окружности, описанной около остроугольного треугольника ABC. На продолжении отрезка AO за точку О отмечена точка K так, что

а) Докажите, что четырехугольник OBKC вписанный.

б) Найдите радиус окружности, описанной около треугольника KBC, если известно, что радиус окружности, описанной около треугольника АBC равен 12, а

Источник: ЕГЭ 28.04.2014 по ма­те­ма­ти­ке. До­сроч­ная волна. Ва­ри­ант 2.

13
Задание 16 № 509161

В прямоугольном треугольнике ABC с прямым углом C известны стороны AC = 12, BC = 5. Окружность радиуса с центром O на стороне BC проходит через вершину C. Вторая окружность касается катета AC, гипотенузы треугольника, а также внешним образом касается первой окружности.

а) Докажите, что радиус второй окружности меньше, чем длины катета AC.

б) Найдите радиус второй окружности.


Аналоги к заданию № 509161: 509024 510494 511581 511593 Все

Источник: СтатГрад: Ди­а­гно­сти­че­ская ра­бо­та по ма­те­ма­ти­ке 13.02.2015 ва­ри­ант МА00410.

14
Задание 16 № 509582

Окружность с центром O проходит через вершины B и C большей боковой стороны прямоугольной трапеции ABCD и касается боковой стороны AD в точке T. Точка O лежит внутри трапеции ABCD.

а) Докажите, что угол BOC вдвое больше угла BTC.

б) Найдите расстояние от точки T до прямой BC, если основания трапеции AB и CD равны 4 и 9 соответственно.


Аналоги к заданию № 509582: 509929 Все

Источник: СтатГрад: Тре­ни­ро­воч­ная ра­бо­та по ма­те­ма­ти­ке 22.04.2015 ва­ри­ант МА10409.

15
Задание 16 № 509823

Окружность, построенная на медиане BM равнобедренного треугольника ABC как на диаметре, второй раз пересекает основание BC в точке K.

а) Докажите, что отрезок BK втрое больше отрезка CK.

б) Пусть указанная окружность пересекает сторону AB в точке N. Найдите AB, если BK = 18 и BN = 17.


Аналоги к заданию № 509823: 511600 Все

Раздел: Алгебра
Источник: ЕГЭ по математике — 2015. До­сроч­ная волна, ре­зерв­ный день (часть С).

16
Задание 16 № 512338

Дана равнобедренная трапеция KLMN с основаниями KN и LM. Окружность с центром O, построенная на боковой стороне KL как на диаметре, касается боковой стороны MN и второй раз пересекает большее основание KN в точке H, точка Q — середина MN.

а) Докажите, что четырёхугольник NQOH — параллелограмм.

б) Найдите KN, если ∠LKN = 75° и LM = 1.


Аналоги к заданию № 512338: 509204 510074 Все

Источник: СтатГрад: Тренировочная ра­бо­та по ма­те­ма­ти­ке 24.09.2015 ва­ри­ант МА10107.

17
Задание 16 № 512359

В треугольник ABC вписана окружность радиуса R, касающаяся стороны AC в точке M , причём AM = 2R и CM = 3R.

а) Докажите, что треугольник ABC прямоугольный.

б) Найдите расстояние между центрами его вписанной и описанной окружностей, если известно, что R = 2 .

Источник: СтатГрад: Тренировочная ра­бо­та по ма­те­ма­ти­ке 18.12.2015 ва­ри­ант МА10211.

18
Задание 16 № 512380

Дана равнобедренная трапеция KLMN с основаниями KN и LM. Окружность с центром O, построенная на боковой стороне KL как на диаметре, касается боковой стороны MN и второй раз пересекает большее основание KN в точке H, точка Q — середина MN.

а) Докажите, что четырёхугольник NQOH — параллелограмм.

б) Найдите KN, если ∠LKN = 75° и LM = 2.

Источник: СтатГрад: Тренировочная ра­бо­та по ма­те­ма­ти­ке 24.09.2015 ва­ри­ант МА10108.

19
Задание 16 № 512401

В треугольник ABC вписана окружность радиуса R, касающаяся стороны AC в точке M , причём AM = 5R и CM = 1,5R.

а) Докажите, что треугольник ABC прямоугольный.

б) Найдите расстояние между центрами его вписанной и описанной окружностей, если известно, что R = 4.

Источник: СтатГрад: Тренировочная ра­бо­та по ма­те­ма­ти­ке 18.12.2015 ва­ри­ант МА10212.

20
Задание 16 № 513267

Отрезок, соединяющий середины M и N оснований BC и AD соответственно трапеции ABCD, разбивает её на две трапеции, в каждую из которых можно вписать окружность.

а) Докажите, что трапеция ABCD равнобедренная.

б) Известно, что радиус этих окружностей равен 3, а меньшее основание BC исходной трапеции равно 8. Найдите радиус окружности, касающейся боковой стороны AB, основания AN трапеции ABMN и вписанной в неё окружности.

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2016
Решение · ·

21
Задание 16 № 513277

На отрезке BD взята точка C. Биссектриса BL равнобедренного треугольника ABC с основанием BC является боковой стороной равнобедренного треугольника BLD с основанием BD.

а) Докажите, что треугольник DCL равнобедренный.

б) Известно, что В каком отношении прямая DL делит сторону AB?

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2016

22
Задание 16 № 513281

На сторонах AC и BC треугольника ABC вне треугольника построены квадраты ACDE и BFKC. Точка M — середина стороны AB.

а) Докажите, что

б) Найдите расстояние от точки M до центров квадратов, если AC = 10, BC = 32 и ∠ACB = 30°.


Аналоги к заданию № 513281: 514716 515708 Все

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2016

23
Задание 16 № 503149

Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй — в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.

а) Докажите, что прямые AD и BC параллельны.

б) Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны 4 и 1.

Источник: Демонстрационная версия ЕГЭ—2014 по математике.

24
Задание 16 № 502296

В треугольник ABC вписана окружность радиуса R, касающаяся стороны AC в точке D, причём AD= R.

а) Докажите, что треугольник ABC прямоугольный.

б) Вписанная окружность касается сторон AB и BC в точках E и F. Найдите площадь треугольника BEF, если известно, что R= 5 и CD =15.

Источник: МИОО: Ди­а­гно­сти­че­ская работа по ма­те­ма­ти­ке 24.09.2013 ва­ри­ант МА10101.

25
Задание 16 № 502316

В треугольник ABC вписана окружность радиуса R, касающаяся стороны AC в точке D, причём AD = R.

а) Докажите, что треугольник ABC прямоугольный.

б) Вписанная окружность касается сторон AB и BC в точках E и F. Найдите площадь треугольника BEF, если известно, что R = 2 и CD = 10.


Аналоги к заданию № 502316: 511378 Все

Источник: МИОО: Ди­а­гно­сти­че­ская работа по ма­те­ма­ти­ке 24.09.2013 ва­ри­ант МА10116.

26
Задание 16 № 503002

Биссектриса угла ADC параллелограмма ABCD пересекает прямую AB в точке E. В треугольник ADE вписана окружность, касающаяся стороны AE в точке K и стороны AD в точке T.

а) Докажите, что прямые KT и DE параллельны.

б) Найдите угол BAD, если известно, что AD = 6 и KT = 3.


Аналоги к заданию № 503002: 511381 Все

Источник: МИОО: Тре­ни­ро­воч­ная работа по ма­те­ма­ти­ке 14.11.2013 ва­ри­ант МА10201.

27
Задание 16 № 503130

Биссектриса угла ADC параллелограмма ABCD пересекает прямую AB в точке E. В треугольник ADE вписана окружность, касающаяся стороны AE в точке K и стороны AD в точке T.

а) Докажите, что прямые KT и DE параллельны.

б) Найдите угол BAD, если известно, что AD = 8 и KT = 4.

Источник: МИОО: Тре­ни­ро­воч­ная работа по ма­те­ма­ти­ке 14.11.2013 ва­ри­ант МА10202.
Решение · ·

28
Задание 16 № 504546

На гипотенузу AB прямоугольного треугольника ABC опустили высоту CH . Из точки H на катеты опустили перпендикуляры HK и HE.

а) Докажите, что точки A, B, K и E лежат на одной окружности.

б) Найдите радиус этой окружности, если AB = 12, CH = 5.


Аналоги к заданию № 504546: 511390 Все

Источник: МИОО: Ди­а­гно­сти­че­ская ра­бо­та по ма­те­ма­ти­ке 13.03.2014 ва­ри­ант МА10505.

29
Задание 16 № 504567

На гипотенузу AB прямоугольного треугольника ABC опустили высоту CH . Из точки H на катеты опустили перпендикуляры HK и HE.

а) Докажите, что точки A, B, K и E лежат на одной окружности.

б) Найдите радиус этой окружности, если AB = 24, CH = 7.

Источник: МИОО: Ди­а­гно­сти­че­ская ра­бо­та по ма­те­ма­ти­ке 13.03.2014 ва­ри­ант МА10506.

30
Задание 16 № 504264

Две окружности пересекаются в точках P и Q. Прямая, проходящая через точку P, второй раз пересекает первую окружность в точке A, а вторую — в точке D. Прямая, проходящая через точку Q параллельно AD, второй раз пересекает первую окружность в точке B, а вторую — в точке C.

а) Докажите, что четырёхугольник ABCD — параллелограмм.

б) Найдите отношение CP : PB, если радиус первой окружности втрое больше радиуса второй.

Раздел: Планиметрия
Источник: МИОО: Тре­ни­ро­воч­ная работа по ма­те­ма­ти­ке 28.01.2014 ва­ри­ант МА10402.

31
Задание 16 № 505105

Около остроугольного треугольника ABC описана окружность с центром O. На продолжении отрезка AO за точку O отмечена точка K так, что BAC + AKC=90°.

а) Докажите, что четырёхугольник OBKC вписанный.

б) Найдите радиус окружности, описанной около четырёхугольника OBKC, если , а

Источник: ЕГЭ 28.04.2014 по ма­те­ма­ти­ке. До­сроч­ная волна. Ва­ри­ант 1.

32
Задание 16 № 505155

На диагонали параллелограмма взяли точку, отличную от её середины. Из неё на все стороны параллелограмма (или их продолжения) опустили перпендикуляры.

а) Докажите, что четырёхугольник, образованный основаниями этих перпендикуляров, является трапецией.

б) Найдите площадь полученной трапеции, если площадь параллелограмма равна 16, а один из его углов равен 60°.

Источник: МИОО: Тре­ни­ро­воч­ная работа по ма­те­ма­ти­ке 22.04.2014 ва­ри­ант МА10601.

33
Задание 16 № 505176

На диагонали параллелограмма взяли точку, отличную от её середины. Из неё на все стороны параллелограмма (или их продолжения) опустили перпендикуляры.

а) Докажите, что четырёхугольник, образованный основаниями этих перпендикуляров, является трапецией.

б) Найдите площадь полученной трапеции, если площадь параллелограмма равна 24, а один из его углов равен 45°.


Аналоги к заданию № 505176: 511398 Все

Источник: МИОО: Тре­ни­ро­воч­ная работа по ма­те­ма­ти­ке 22.04.2014 ва­ри­ант МА10602.

34
Задание 16 № 505239

В равнобедренном треугольнике ABC с углом 120° при вершине A проведена биссектриса BD. В треугольник ABC вписан прямоугольник DEFH так, что сторона FH лежит на отрезке BC, а вершина E —  на отрезке AB.

а) Докажите, что FH = 2DH.

б) Найдите площадь прямоугольника DEFH, если AB = 4.


Аналоги к заданию № 505239: 511400 Все

Источник: ЕГЭ по ма­те­ма­ти­ке 08.05.2014. До­сроч­ная волна, ре­зерв­ный день. Ва­ри­ант 1.

35
Задание 16 № 505249

В равнобедренном треугольнике ABC с углом 120° при вершине A проведена биссектриса BD. В треугольник ABC вписан прямоугольник DEFH так, что сторона FH лежит на стороне BC, а вершина E —  на стороне AB.

а) Докажите, что FH = 2DH.

б) Найдите площадь прямоугольника DEFH, если AB = 2.

Источник: ЕГЭ по ма­те­ма­ти­ке 08.05.2014. До­сроч­ная волна, ре­зерв­ный день. Ва­ри­ант 2.

36
Задание 16 № 505389

Дан четырёхугольник ABCD.

а) Докажите, что отрезки LN и KM, соединяющие середины его противоположных сторон, делят друг друга пополам.

б) Найдите площадь четырёхугольника ABCD, если ,


Аналоги к заданию № 505389: 505410 511403 Все

Источник: МИОО: Тре­ни­ро­воч­ная работа по ма­те­ма­ти­ке 19.05.2014 ва­ри­ант МА10701.
Решение · ·

37
Задание 16 № 505419

Высоты BB1 и CC1 остроугольного треугольника ABC пересекаются в точке H.

а) Докажите, что ∠AHB1 = ∠ACB.

б) Найдите BC, если и ∠BAC = 60°.


Аналоги к заданию № 505419: 505452 511406 Все

Источник: ЕГЭ по ма­те­ма­ти­ке 05.06.2014. Ос­нов­ная волна. Запад. Ва­ри­ант 301.

38
Задание 16 № 505425

Высоты BB1 и CC1 остроугольного треугольника ABC пересекаются в точке H.

а) Докажите, что ∠AHB1 = ∠ACB.

б) Найдите BC, если AH = 4 и ∠BAC = 60°.

Источник: ЕГЭ по ма­те­ма­ти­ке 05.06.2014. Ос­нов­ная волна. Запад. Ва­ри­ант 302.

39
Задание 16 № 505473

В остроугольном треугольнике ABC провели высоту BH из точки H на стороны AB и BC опустили перпендикуляры HK и HM соответственно.

а) Докажите, что треугольник MBK подобен треугольнику ABC.

б) Найдите отношение площади треугольника MBK к площади четырёхугольника AKMC, если BH = 2, а радиус окружности, описанной около треугольника ABC равен 4.

Источник: ЕГЭ по ма­те­ма­ти­ке 05.06.2014. Ос­нов­ная волна. Восток. Ва­ри­ант 1.

40
Задание 16 № 505495

В остроугольном треугольнике ABC провели высоту BH из точки H на стороны AB и BC опустили перпендикуляры HK и HM соответственно.

а) Докажите, что треугольник MBK подобен треугольнику ABC.

б) Найдите отношение площади треугольника MBK к площади четырёхугольника AKMC, если BH = 1, а радиус окружности, описанной около треугольника ABC, равен 4.


Аналоги к заданию № 505495: 509182 511409 Все

Источник: ЕГЭ по ма­те­ма­ти­ке 05.06.2014. Ос­нов­ная волна. Восток. Ва­ри­ант 2.

41
Задание 16 № 505537

Медианы AA1, BB1 и CC1 треугольника ABC пересекаются в точке M. Известно, что AC = 3MB.

а) Докажите, что треугольник ABC прямоугольный.

б) Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 10.


Аналоги к заданию № 505537: 511579 Все


42
Задание 16 № 504418

На сторонах AD и BC параллелограмма ABCD взяты соответственно точки M и N , причём M — середина AD, а BN : NC = 1 : 3.

а) Докажите, что прямые AN и AC делят отрезок BM на три равные части.

б) Найдите площадь четырёхугольника, вершины которого находятся в точках С, N и точках пересечения прямой BM c прямыми AN и AC , если площадь параллелограмма ABCD равна 48.


Аналоги к заданию № 504418: 511388 Все

Источник: МИОО: Тре­ни­ро­воч­ная ра­бо­та по ма­те­ма­ти­ке 26.02.2014 ва­ри­ант МА00201.

43
Задание 16 № 504439

Точка M — середина стороны AD параллелограмма ABCD . Из вершины A проведены два луча, которые разбивают отрезок BM на три равные части.

а) Докажите, что один из лучей содержит диагональ параллелограмма.

б) Найдите площадь четырёхугольника, ограниченного двумя проведёнными лучами и прямыми BD и BC , если площадь параллелограмма ABCD равна 40.


Аналоги к заданию № 504439: 511389 Все

Источник: МИОО: Тре­ни­ро­воч­ная ра­бо­та по ма­те­ма­ти­ке 26.02.2014 ва­ри­ант МА00202.

44
Задание 16 № 504832

Окружность с центром O, вписанная в треугольник ABC, касается стороны BC в точке P и пересекает отрезок BO в точке Q. При этом отрезки OC и QP параллельны.

а) Докажите, что треугольник ABC ― равнобедренный треугольник.

б) Найдите площадь треугольника BQP, если точка O делит высоту BD треугольника в отношении BO : OD = 3 : 1 и AC = 2a.


Аналоги к заданию № 504832: 511393 Все

Источник: Проб­ный эк­за­мен по ма­те­ма­ти­ке Санкт-Петербург 2014. Ва­ри­ант 1.

45
Задание 16 № 505431

Около равнобедренного треугольника ABC с основанием BC описана окружность. Через точку C провели прямую, параллельную стороне AB. Касательная к окружности, проведённая в точке B, пересекает эту прямую в точке K.

а) Докажите, что треугольник BCK — равнобедренный.

б) Найдите отношение площади треугольника ABC к площади треугольника BCK, если


Аналоги к заданию № 505431: 511408 Все

Источник: ЕГЭ по ма­те­ма­ти­ке 05.06.2014. Ос­нов­ная волна. Ва­ри­ант 901.

46
Задание 16 № 505536

Медианы AA1, BB1 и CC1 треугольника ABC пересекаются в точке M. Точки A2, B2 и C2 — середины отрезков MA, MB и MC соответственно.

а) Докажите, что площадь шестиугольника A1B2C1A2B1C2 вдвое меньше площади треугольника ABC.

б) Найдите сумму квадратов всех сторон этого шестиугольника, если известно, что AB = 4, BC = 7 и AC = 8.


47
Задание 16 № 513608

Точка O — центр окружности, описанной около остроугольного треугольника ABC, I — центр вписанной в него окружности, H — точка пересечения высот. Известно, что

а) Докажите, что точка I лежит на окружности, описанной около треугольника BOC.

б) Найдите угол OIH, если

Источник: ЕГЭ по ма­те­ма­ти­ке 28.03.2016. До­сроч­ная волна, ва­ри­ант 101

48
Задание 16 № 513915

Прямая, проходящая через вершину В, прямоугольника ABCD, перпендикулярная диагонали АС и пересекает сторону АD в точке M, равноудаленной от вершин В и D

а) Докажите, что ∠ABM = ∠DBC = ∠MBD.

б) Найдите расстояние от точки О, точки пересечения диагоналей, до отрезка СМ, если BC = 42.


49
Задание 16 № 513922

Прямая, проходящая через вершину В, прямоугольника ABCD, перпендикулярная диагонали АС и пересекает сторону АD в точке M, равноудаленной от вершин В и D

а) Докажите, что BM и ВD делят угол В на три равных угла.

б) Найдите расстояние от точки пересечения диагоналей прямоугольника ABCD до прямой СМ, если


Аналоги к заданию № 513922: 513915 Все

Источник: За­да­ния 16 (С4) ЕГЭ 2016

50
Задание 16 № 514097

Одна окружность вписана в прямоугольную трапецию, а вторая касается большей боковой стороны и продолжений оснований.

а) Докажите, что расстояние между центрами окружностей равно большей боковой стороне трапеции.

б) Найдите расстояние от вершины одного из прямых углов трапеции до центра второй окружности, если точка касания первой окружности с большей боковой стороной трапеции делит её на отрезки, равные 2 и 50.

Источник: За­да­ния 16 (С4) ЕГЭ 2014

51
Задание 16 № 514098

К двум непересекающимся окружностям равных радиусов проведены две параллельные общие касательные. Окружности касаются одной из этих прямых в точках A и B/ Через точку C, лежащую на отрезке AB, проведены касательные к этим окружностям, пересекающие вторую прямую в точках D и E, причём отрезки CA и CD касаются одной окружности, а отрезки CB и CE — другой.

а) Докажите, что периметр треугольника CDE вдвое больше расстояния между центрами окружностей.

б) Найдите DE, если радиусы окружностей равны 5, расстояние между их центрами равно 18, а AC = 8.

Источник: За­да­ния 16 (С4) ЕГЭ 2014

52
Задание 16 № 514124

Диагональ AC разбивает трапецию ABCD с основанием AD и BC? из которых AD большее, на два подобных треугольника.

а) Докажите, что ∠ABC = ACD.

б) Найдите отрезок, соединяющий середины оснований трапеции, если известно, что BC = 18, AD = 50 и

Источник: За­да­ния 16 (С4) ЕГЭ 2014

53
Задание 16 № 514372

К окружности, вписанной в квадрат ABCD, проведена касательная, пересекающая стороны AB и AD в точках M и N соответственно.

а) Докажите, что периметр треугольника AMN равен стороне квадрата.

б) Прямая MN пересекает прямую CD в точке P. В каком отношении делит сторону BC прямая, проходящая через точку P и центр окружности, если AM : MB = 1 : 3?

Источник: За­да­ния 16 (С4) ЕГЭ 2015

54
Задание 16 № 514375

Точка M лежит на стороне BC выпуклого четырёхугольника ABCD, причём B и C — вершины равнобедренных треугольников с основаниями AM и DM соответственно, а прямые AM и MD перпендикулярны.

а) Докажите, что биссектрисы углов при вершинах B и C четырёхугольника ABCD, пересекаются на стороне AD.

б) Пусть N — точка пересечения этих биссектрис. Найдите площадь четырёхугольника ABCD, если известно, что BM : MC = 3 : 4, а площадь четырёхугольника, стороны которого лежат на прямых AM, DM, BN и CN, равна 24.

Источник: За­да­ния 16 (С4) ЕГЭ 2015

55
Задание 16 № 514449

В треугольнике АВС проведены высоты АК и СМ. На них из точек М и К опущены перпендикуляры МЕ и КН соответственно.

 

а) Докажите, что прямые ЕН и АС параллельны;

б) Найдите отношение ЕН : АС, если угол АВС равен 30°.


Аналоги к заданию № 514449: 514529 Все

Источник: За­да­ния 16 (С4) ЕГЭ 2016

56
Задание 16 № 514476

В треугольнике АВС угол АВС равен 60°. Окружность, вписанная в треугольник, касается стороны AC в точке M.

а) Докажите, что отрезок BM не больше утроенного радиуса вписанной в треугольник окружности.

б) Найдите если известно, что отрезок ВМ в 2,5 раза больше радиуса вписанной в треугольник окружности.

Источник: За­да­ния 16 (С4) ЕГЭ 2016

57
Задание 16 № 514482

В трапеции ABCD точка E — середина основания AD, точка M — середина боковой стороны AB. Отрезки CE и DM пересекаются в точке O.

а) Докажите, что площади четырёхугольника AMOE и треугольника COD равны.

б) Найдите, какую часть от площади трапеции составляет площадь четырёхугольника AMOE, если BC = 3, AD = 4.

Источник: ЕГЭ — 2016. Ос­нов­ная волна по математике 06.06.2016. Вариант 437. Юг

58
Задание 16 № 514536

В остроугольном треугольнике ABC проведены высоты AK и CM. На них из точек M и K опущены перпендикуляры ME и KH соответственно.

а) Докажите, что прямые EH и AC параллельны.

б) Найдите отношение EH и AC, если

Источник: ЕГЭ — 2016 по математике. Ос­нов­ная волна 06.06.2016. Вариант 3 (C часть)

59
Задание 16 № 514562

Дана трапеция ABCD с боковой стороной AB, которая перпендикулярна основаниям. Из точки А на сторону CD опущен перпендикуляр AH. На стороне AB взята точка E так, что прямые СЕ и СD перпендикулярны.

а) Доказать, что прямые BH и ED параллельны.

б) Найти отношение BH к ED, если

Источник: ЕГЭ — 2016. Ос­нов­ная волна 06.06.2016. Центр

60
Задание 16 № 514605

В прямоугольном треугольнике АВС с прямым углом С точки М и N — середины катетов АС и ВС соответственно, СН — высота.

а) Докажите, что прямые МН и NH перпендикулярны.

б) Пусть Р — точка пересечения прямых АС и NH, а Q — точка пересечения прямых BC и МН. Найдите площадь треугольника PQM, если АН = 12 и ВН = 3.


Аналоги к заданию № 514605: 514612 Все

Источник: ЕГЭ по математике 06.06.2016. Ос­нов­ная волна. Вариант 601 (C часть).

61
Задание 16 № 514633

На продолжении стороны АС за вершину А треугольника АВС отмечена точка D так, что AD = AB. Прямая, проходящая через точку А, параллельно BD, пересекает сторону ВС в точке M.

а) Докажите, что AM — биссектриса треугольника АВС.

б) Найти SAMBD, если AC = 30, BC = 18 и AB = 24.


Аналоги к заданию № 514633: 514619 Все

Источник: ЕГЭ по математике 06.06.2016. Ос­нов­ная волна. Вариант 608 (C часть).

62
Задание 16 № 514717

На отрезке BD взята точка C. Биссектриса BL равнобедренного треугольника ABC с основанием BC является боковой стороной равнобедренного треугольника BLD с основанием BD.

а) Докажите, что треугольник DCL равнобедренный.

б) Известно, что В каком отношении прямая DL делит сторону AB?

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2016

63
Задание 16 № 514718

Сторона CD прямоугольника ABCD касается некоторой окружности в точке M. Продолжение стороны AD пересекает окружность в точках P и Q, причём точка P лежит между точками D и Q. Прямая BC касается окружности, а точка Q лежит на прямой BM.

а) Докажите, что ∠DMP = ∠CBM.

б) Известно, что CM = 17 и CD = 25. Найдите сторону AD.

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2016

64
Задание 16 № 514719

Отрезок, соединяющий середины M и N оснований BC и AD соответственно трапеции ABCD, разбивает её на две трапеции, в каждую из которых можно вписать окружность.

а) Докажите, что трапеция ABCD равнобедренная.

б) Известно, что радиус этих окружностей равен 3, а меньшее основание BC исходной трапеции равно 10. Найдите радиус окружности, касающейся боковой стороны AB, основания AN трапеции ABMN и вписанной в неё окружности.

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2016

65
Задание 16 № 514730

В прямоугольном треугольнике ABC точки M и N — середины гипотенузы AB и катета BC соответственно. Биссектриса угла BAC пересекает прямую MN в точке L.

а) Докажите, что треугольники AML и BLC подобны.

б) Найдите отношение площадей этих треугольников, если

Источник: За­да­ния 16 (С4) ЕГЭ 2016

66
Задание 16 № 515651

Окружность с центром O вписана в угол, равный 60°. Окружность большего радиуса с центом O1 также вписана в этот угол и проходит через точку O.

а) Докажите, что радиус второй окружности вдвое больше радиуса первой.

б) Найдите длину общей хорды этих окружностей, если известно, что радиус первой окружности равен

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2017. Вариант 1. (Часть C).

67
Задание 16 № 515689

Точки B1 и C1 лежат на сторонах соответственно AC и AB треугольника ABC, причём AB1 : B1C = AC1 : C1B. Прямые BB1 и CC1 пересекаются в точке O.

а) Докажите, что прямая AO делит пополам сторону BC.

б) Найдите отношение площади четырёхугольника AB1OC1 к площади треугольника ABC, если известно, что AB1 : B1C = AC1 : C1B = 1 : 4.

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2017. Вариант 3. (Часть C).

68
Задание 16 № 515727

На катетах AC и BC прямоугольного треугольника ABC вне треугольника построены квадраты ACDE и BFKC. Точка M — середина гипотенузы AB, H — точка пересечения прямых CM и DK.

а) Докажите, что CMDK.

б) Найдите MH, если известно, что катеты треугольника ABC равны 130 и 312.

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2017. Вариант 5. (Часть C).

69
Задание 16 № 515765

Окружность с центром O вписана в угол, равный 60°. Окружность большего радиуса с центром O1 также вписана в этот угол и проходит через точку O.

а) Докажите, что радиус второй окружности вдвое больше радиуса первой.

б) Найдите длину общей хорды этих окружностей, если известно, что радиус первой окружности равен

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2017. Вариант 7. (Часть C).

70
Задание 16 № 515784

На сторонах AC и BC треугольника ABC вне треугольника построены квадраты ACDE и BFKC. Точка M — середина стороны AB.

а) Докажите, что

б) Найдите расстояния от точки M до центров квадратов, если и

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2017. Вариант 8. (Часть C).

71
Задание 16 № 515828

Медианы AA1, BB1, и CC1 треугольника ABC пересекаются в точке M. Точки A2, B2 и C2 — середины отрезков MA, MB и MC соответственно.

а) Докажите, что площадь шестиугольника A1B2C1A2B1C2 вдвое меньше площади треугольника ABC.

б) Найдите сумму квадратов всех сторон этого шестиугольника, если известно, что AB = 5, BC = 8 и AC = 10.

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2017. Вариант 10. (Часть C).

72
Задание 16 № 516277

Дана трапеция ABCD с основаниями AD и BC. Диагональ BD разбивает её на два равнобедренных треугольника с основаниями AD и CD.

а) Докажите, что луч AC — биссектриса угла BAD .

б) Найдите CD, если известны диагонали трапеции: AC = 15 и BD = 8,5.


Аналоги к заданию № 516277: 516258 Все

Источник: СтатГрад: Тренировочная работа по математике 26.01.2017 вариант МА10310

73
Задание 16 № 516403

Точки P,\ Q,\ W делят стороны выпуклого четырехугольника ABCD в отношении AP : PB = CQ : QB = CW : WD = 3 : 4, радиус окружности, описанной около треугольника PQW, равен 10, PQ = 16, QW = 12, угол PWQ — острый.

а) Докажите, что треугольник PQW — прямоугольный.

б) Найдите площадь четырёхугольника ABCD.


Аналоги к заданию № 516403: 516383 Все

Источник: СтатГрад: Тренировочная работа по математике 22.09.2016 вариант МА10112
Решение · ·

74
Задание 16 № 516763

Параллелограмм и окружность расположены так, что сторона AB касается окружности, CD является хордой, а стороны DA и BC пересекают окружность в точках P и Q соответственно.

а) Докажите, что около четырехугольника ABQP можно описать окружность.

б) Найдите длину отрезка DQ, если известно, что AP = a, BC = b, BQ = c.

Источник: Пробный эк­за­мен Санкт-Петербург, 11.04.2017. Вариант 1.

75
Задание 16 № 516782

Окружность проходит через вершины A и B параллелограмма ABCD, пересекает стороны AD и BC в точках M и N соответственно и касается стороны CD.

а) Докажите, что точки C, D, M и N лежат на одной окружности.

б) Найдите длину отрезка AD, зная, что BM = a, MD = b, NC = c.

Источник: Пробный эк­за­мен Санкт-Петербург, 11.04.2017. Вариант 2.

76
Задание 16 № 516801

В треугольнике ABC точки A1, B1 и C1 — середины сторон BC, AC и AB соответственно, AH — высота,

а) Докажите, что A1, B1, C1 и H лежат на одной окружности.

б) Найдите A1H, если

Источник: ЕГЭ по математике 31.03.2017. Досрочная волна.

77
Задание 16 № 517183

Прямая, проходящая через вершину B прямоугольника ABCD перпендикулярно диагонали AC, пересекает сторону AD в точке M, равноудалённой от вершин B и D.

а) Докажите, что ∠ABM = ∠DBC = 30°.

б) Найдите расстояние от центра прямоугольника до прямой CM, если BC = 9.


Аналоги к заданию № 517183: 517221 Все

Источник: СтатГрад: Тренировочная работа 06.03.2017 вариант МА10609

78
Задание 16 № 517202

Прямая, проходящая через середину M гипотенузы AB прямоугольного треугольника ABC, перпендикулярна CM и пересекает катет AC в точке K. При этом AK : KC = 1 : 2.

а) Докажите, что

б) Пусть прямые MK и BC пресекаются в точке P, а прямые AP и BK — в точке Q. Найдите KQ, если BC = 


Аналоги к заданию № 517202: 517240 Все

Источник: СтатГрад: Тренировочная работа 21.04.2017 вариант МА10709

79
Задание 16 № 517265

Точка M — середина гипотенузы AB прямоугольного треугольника ABC. Серединный перпендикуляр к гипотенузе пересекает катет BC в точке N.

а) Докажите, что ∠CAN = ∠CMN.

б) Найдите отношение радиусов окружностей, описанных около треугольников ANB и CBM, если

Источник: ЕГЭ по ма­те­ма­ти­ке — 2017. До­сроч­ная волна, ре­зерв­ный день, вариант А. Ларина (часть С).

80
Задание 16 № 517448

Точка E — середина боковой стороны CD трапеции ABCD. На стороне AB взяли точку K, так, что прямые CK и AE параллельны. Отрезки CK и BE пересекаются в точке O.

а) Докажите, что CO = KO.

б) Найти отношение оснований трапеции BC и AD, если площадь треугольника BCK составляет площади трапеции ABCD.


Аналоги к заданию № 517448: 517455 517441 517553 Все

Источник: За­да­ния 16 (С4) ЕГЭ 2017

81
Задание 16 № 517462

Две окружности с центрами O1 и O2 пересекаются в точках A и B, причём точки O1 и O2 лежат по разные стороны от прямой AB. Продолжения диаметра CA первой окружности и хорды CB этой окружности пересекают вторую окружности в точках D и E соответственно.

а) Докажите, что треугольники CBD и O1AO2 подобны.

б) Найдите AD, если радиус второй окружности втрое больше радиуса первой и AB = 3.


Аналоги к заданию № 517462: 517469 517530 517531 Все

Источник: За­да­ния 16 (С4) ЕГЭ 2017

82
Задание 16 № 517479

В прямоугольном треугольнике ABC проведена высота CH из вершины прямого угла. В треугольники ACH и BCH вписаны окружности с центрами O1 и O2 соответственно, касающиеся прямой CH в точках M и N соответственно.

а) Докажите, что прямые AO1 и CO2 перпендикулярны.

б) Найдите площадь четырёхугольника MO1NO2, если AC = 20 и BC = 15.

Источник: За­да­ния 16 (С4) ЕГЭ 2017

83
Задание 16 № 517486

В прямоугольном треугольнике ABC проведена высота CH из вершины прямого угла. В треугольники ACH и BCH вписаны окружности с центрами O1 и O2 соответственно, касающиеся прямой CH в точках M и N соответственно.

а) Докажите, что прямые AO1 и CO2 перпендикулярны.

б) Найдите площадь четырёхугольника MO1NO2, если AC = 12 и BC = 5.

Источник: За­да­ния 16 (С4) ЕГЭ 2017

84
Задание 16 № 517502

Точки E и K — соответственно середины сторон CD и AD квадрата ABCD. Прямая BE пересекается с прямой CK в точке O.

а) Докажите, что вокруг четырёхугольника ABOK можно описать окружность.

б) Найдите AO, если сторона квадрата равна 1.

Источник: За­да­ния 16 (С4) ЕГЭ 2017

85
Задание 16 № 517516

Две окружности касаются внутренним образом в точке A, причём меньшая окружность проходит через центр O большей. Диаметр BC большей окружности вторично пересекает меньшую окружность в точке M, отличной от A. Лучи AO и AM вторично пересекают большую окружность в точках P и Q соответственно. Точка C лежит на дуге AQ большей окружности, не содержащей точку P.

а) Докажите, что прямые PQ и BC параллельны.

б) Известно, что Прямые PC и AQ пересекаются в точке K. Найдите отношение

Источник: За­да­ния 16 (С4) ЕГЭ 2017

86
Задание 16 № 517522

Известно, что АBCD трапеция, АD = 2BC, AD, BC — основания. Точка M такова, что углы АBM и MCD прямые.

а) Доказать, что MA = MD.

б) Расстояние от M до AD равно BC, а угол АDC равен 55°. Найдите угол BAD.

Источник: За­да­ния 16 (С4) ЕГЭ 2017
Решение · ·

87
Задание 16 № 517523

В трапеции АBCD угол BAD прямой. Окружность, построенная на большем основании АD как на диаметре, пересекает меньшее основание BC в точке C и M.

а) Докажите, что угол BАM равен углу CАD.

б) Диагонали трапеции АBCD пересекаются в точке O.

Найдите площадь треугольника АOB, если АB = 6, а BC = 4BM.

Источник: За­да­ния 16 (С4) ЕГЭ 2017

88
Задание 16 № 517524

Дана равнобедренная трапеция, в которой AD = 3BC, CM — высота трапеции.

а) Доказать, что M делит AD в отношении 2:1.

б) Найдите расстояние от точки C до середины BD, если AD = 18, AC =

Источник: За­да­ния 16 (С4) ЕГЭ 2017

89
Задание 16 № 517526

Дана трапеция с диагоналями равными 8 и 15. Сумма оснований равна 17.

а) Докажите, что диагонали перпендикулярны.

б) Найдите площадь трапеции.

Источник: За­да­ния 16 (С4) ЕГЭ 2017

90
Задание 16 № 517528

Дана трапеция с диагоналями равными 6 и 8. Сумма оснований равна 10.

а) Докажите, что диагонали перпендикулярны.

б) Найдите высоту трапеции.

Источник: За­да­ния 16 (С4) ЕГЭ 2017

91
Задание 16 № 517529

Дана трапеция ABCD, так, что и точка M внутри трапеции,

а) Докажите, что АM = DM.

б) Найдите угол BAD, если угол CDA равен 50 градусов, а высота, проведённая из точки M к АD равна BC.

Источник: За­да­ния 16 (С4) ЕГЭ 2017

92
Задание 16 № 517532

Две окружности с центрами O1 и O2 и радиусами 3 и 4 пересекаются в точках A и B. Через точку A проведена прямая MK пересекающая обе окружности в точках M и K, причем точка A находится между ними.

а) Докажите, что треугольники BMK и O1AO2 подобны.

б) Найдите расстояние от точки B до прямой MK, если O1O2 = 5, MK = 7.

Источник: За­да­ния 16 (С4) ЕГЭ 2017

93
Задание 16 № 517533

Две окружности касаются внутренним образом в точке A, причем меньшая окружность проходит через через центр O большей. Диаметр BC большей окружности вторично пересекает меньшую окружность в точке M, отличной от A. Лучи AO и AM вторично пересекают большую окружность в точках P и Q соответственно. Точка C лежит на дуге AQ большей окружности, не содержащей точку P.

а) Докажите, что прямые PQ и BC параллельны.

б) Известно, что sinAOC = Прямые PC и AQ пересекаются в точке K. Найдите отношение QK:KA.


Аналоги к заданию № 517533: 517534 Все

Источник: За­да­ния 16 (С4) ЕГЭ 2017

94
Задание 16 № 517535

Основания трапеции равны 4 и 9, а её диагонали равны 5 и 12.

а) Докажите, что диагонали перпендикулярны.

б) Найдите площадь трапеции.

Источник: За­да­ния 16 (С4) ЕГЭ 2017

95
Задание 16 № 517553

Точка E — середина боковой стороны CD трапеции ABCD. На стороне AB взяли точку K так, что прямые CK и AE параллельны. Отрезок CK и BE пересекаются в точке O.

а) Доказать, что CO = KO.

б) Найти отношение оснований трапеции BC и AD, если площадь треугольника BCK составляет площади трапеции ABCD.


96
Задание 16 № 517741

Окружность, вписанная в трапецию ABCD, касается ее боковых сторон AB и CD в точках M и N соответственно. Известно, что AM = 8MB и DN = 2CN.

а) Докажите, что AD = 4BC.

б) Найдите длину отрезка MN, если радиус окружности равен


Аналоги к заданию № 517741: 517751 Все

Источник: ЕГЭ — 2017. Резервный день 28.06.2017. Вариант 501 (C часть).

97
Задание 16 № 517758

В трапецию ABCD с основаниями AD и BC вписана окружность с центром O.

а) Докажите, что

б) Найдите площадь трапеции, если а основания равны 5 и 7.

Источник: ЕГЭ — 2017. Резервный день 28.06.2017. Вариант 992 (C часть).

98
Задание 16 № 517832

В треугольник ABC, в котором длина стороны AC меньше длины стороны BC, вписана окружность с центром O. Точка B1 симметрична точке B относительно CO.

а) Докажите, что A, B, O и B1 лежат на одной окружности.

б) Найдите площадь четырёхугольника AOBB1, если AB = 10, AC = 6 и BC = 8.

Источник: ЕГЭ — 2017. Резервный день 28.06.2017. Восток (C часть).

99
Задание 16 № 518116

В прямоугольную трапецию ABCD с прямым углом при вершине A и острым углом при вершине D вписана окружность с центром O. Прямая DO пересекает сторону AB в точке M, а прямая CO пересекает сторону AD в точке K.

а) Докажите, что .

б) Найдите площадь треугольника AOM, если и .

Источник: ЕГЭ — 2017.Вариант 511 (C часть).

100
Задание 16 № 518146

В треугольник ABC, в котором длина стороны AC больше длины стороны BC, вписана окружность с центром O. Точка B1 симметрична точке B относительно прямой CO.

а) Докажите, что A, B, O и B1 лежат на одной окружности.

б) Найдите площадь четырёхугольника ABOB1, если AB = 10, AC = 8 и BC = 6.

Источник: ЕГЭ — 2017.Вариант 610 (C часть).

Пройти тестирование по этим заданиям



     О проекте · Редакция

© Гущин Д. Д., 2011—2017


СПб ГУТ! С! Ф! У!