СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
Математика профильного уровня
Cайты, меню, вход, новости


Варианты заданий
Версия для печати и копирования в MS Word
1
Задание 19 № 520884

В школах № 1 и № 2 учащиеся писали тест. Из каждой школы тест писали по крайней мере два учащихся, а суммарно тест писали 9 учащихся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. Оказалось, что в каждой школе средний балл был целым числом. После этого, один из учащихся, писавших тест, перешел из школы № 1 в школу № 2, а средние баллы за тест были пересчитаны в обеих школах.

а) Мог ли средний балл в школе № 1 уменьшиться в 10 раз?

б) Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Мог ли первоначальный средний балл в школе № 2 равняться 7?

в) Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Найдите наименьшее значение первоначального среднего балла в школе № 2.


Аналоги к заданию № 520808: 520884 520920 520858 Все

Источник: ЕГЭ — 2018. Основная волна 01.06.2018. Вариант 313 (C часть)., Задания 19 (С7) ЕГЭ 2018
Раздел кодификатора ФИПИ/Решу ЕГЭ: Числа и их свойства

2
Задание 19 № 520920

В школах № 1 и № 2 учащиеся писали тест. Из каждой школы тест писали по крайней мере два учащихся, а суммарно тест писали 50 учащихся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. Оказалось, что в каждой школе средний балл был целым числом. После этого, один из учащихся, писавших тест, перешел из школы № 1 в школу № 2, а средние баллы за тест были пересчитаны в обеих школах.

а) Мог ли средний балл в школе № 1 уменьшиться в 2 раза?

б) Средний балл в школе № 1 уменьшился на 2%, средний балл в школе № 2 также уменьшился на 2%. Мог ли первоначальный средний балл в школе № 2 равняться 9?

в) Средний балл в школе № 1 уменьшился на 2%, средний балл в школе № 2 также уменьшился на 2%. Найдите наименьшее значение первоначального среднего балла в школе № 2.


Аналоги к заданию № 520808: 520884 520920 520858 Все

Источник: ЕГЭ — 2018. Основная волна 01.06.2018. Вариант 314 (C часть)., Задания 19 (С7) ЕГЭ 2018
Раздел кодификатора ФИПИ/Решу ЕГЭ: Числа и их свойства

3
Задание 19 № 520858

В школах № 1 и № 2 учащиеся писали тест. Из каждой школы тест писали по крайней мере два учащихся, а суммарно тест писал 81 учащийся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. оказалось, что в каждой школе средний балл был целым числом. После этого, один из учащихся, писавших тест, перешел из школы № 1 в школу № 2, а средние баллы за тест были пересчитаны в обеих школах.

а) Мог ли средний балл в школе № 1 вырасти в два раза?

б) Средний балл в школе № 1 вырос на 20%, средний балл в школе № 2 также вырос на 20%. Мог ли первоначальный балл в школе № 2 равняться 1?

в) Средний балл в школе № 1 вырос на 20%, средний балл в школе № 2 также вырос на 20%. Найдите наименьшее значение первоначального среднего балла в школе № 2.


Аналоги к заданию № 520808: 520884 520920 520858 Все

Источник: ЕГЭ — 2018. Основная волна 01.06.2018. Вариант 302 (C часть)., Задания 19 (С7) ЕГЭ 2018
Раздел кодификатора ФИПИ/Решу ЕГЭ: Числа и их свойства