Вариант № 6490808

А. Ларин: Тренировочный вариант № 83.

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Задания Д8 C1 № 508095

а) Решите уравнение  тангенс в квадрате }3x минус 2 синус в квадрате 3x=0;

б) Найдите все корни на промежутке  левая квадратная скобка минус дробь: числитель: Пи , знаменатель: 3 конец дроби ; дробь: числитель: 4 Пи , знаменатель: 3 конец дроби правая квадратная скобка .


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Задания Д10 C2 № 508096

Площадь треугольника, образованного диагональным сечением правильной четырёхугольной пирамиды SABCD с вершиной S, вдвое больше площади её основания.

а) Постройте это сечение;

б) Найдите косинус плоского угла при вершине пирамиды.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Задания Д12 C3 № 508097

Решите неравенство  левая круглая скобка дробь: числитель: 15, знаменатель: 14 конец дроби правая круглая скобка в степени (\left| x плюс 7 |) меньше левая круглая скобка дробь: числитель: 15, знаменатель: 14 конец дроби правая круглая скобка в степени (\left| x) в квадрате минус 3x плюс 2 |.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Задания Д15 C4 № 508098

Через точку T внутри треугольника ABC проведены три прямые k, l и m так, что k || AB, l || BC, m || AC. Эти прямые образуют три треугольника, два из которых равны по площади.

а) Докажите, что квадрат суммы квадратных корней из площадей треугольников, образованных прямыми k, l и m со сторонами треугольника ABC, равен площади этого треугольника;

б) Найдите площадь меньшего треугольника, если известно, что площадь треугольника ABC равна 25, а площадь каждого из равных треугольников равна 4.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Тип 15 № 506950

В банк помещена сумма 3900 тысяч рублей под 50% годовых. В конце каждого из первых четырех лет хранения после начисления процентов вкладчик дополнительно вносил на счет одну и ту же фиксированную сумму. К концу пятого года после начисления процентов оказалось, что размер вклада увеличился по сравнению с первоначальным на 725%. Какую сумму вкладчик ежегодно добавлял к вкладу?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Задания Д17 C6 № 508099

При каких значениях параметра a неравенство

a в кубе x в степени (4) плюс 6a в квадрате x в квадрате минус x плюс 9a плюс 3 больше или равно 0

верно при любом x?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

7
Задания Д19 C7 № 508100

Имеются 300 яблок. Докажите, что их можно разложить в пакеты по два яблока так, чтобы любые два пакета различались по весу не более, чем в полтора раза, если любые два яблока различаются по весу не более, чем:

а) в два раза;

б) в три раза.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить тестирование, свериться с ответами, увидеть решения.