Вариант № 37342941

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип Д2 № 503132
i

Фут­бол­ка сто­и­ла 800 руб­лей. Затем цена была сни­же­на на 15%. Сколь­ко руб­лей сдачи с 1000 руб­лей дол­жен по­лу­чить по­ку­па­тель при по­куп­ке этой фут­бол­ки после сни­же­ния цены?


Ответ:

2
Тип Д1 № 505139
i

На диа­грам­ме по­ка­зан сред­ний балл участ­ни­ков 10 стран в те­сти­ро­ва­нии уча­щих­ся 4-⁠го клас­са, по ма­те­ма­ти­ке в 2007 году (по 1000-⁠балль­ной шкале). По дан­ным диа­грам­мы най­ди­те число стран, в ко­то­рых сред­ний балл ниже, чем в Ни­дер­лан­дах.


Ответ:

3
Тип Д4 № 27555
i

Най­ди­те пло­щадь че­ты­рех­уголь­ни­ка, изоб­ра­жен­но­го на клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1 см \times 1 см (см. рис.). Ответ дайте в квад­рат­ных сан­ти­мет­рах.


Ответ:

4
Тип 4 № 285924
i

На кон­фе­рен­цию при­е­ха­ли 3 уче­ных из Нор­ве­гии, 3 из Рос­сии и 4 из Ис­па­нии. Каж­дый из них де­ла­ет на кон­фе­рен­ции один до­клад. По­ря­док до­кла­дов опре­де­ля­ет­ся же­ребьёвкой. Най­ди­те ве­ро­ят­ность того, что вось­мым ока­жет­ся до­клад уче­но­го из Рос­сии.


Ответ:

5
Тип 6 № 77384
i

Най­ди­те ко­рень урав­не­ния:  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4x минус 1 конец дроби =5.


Ответ:

6
Тип 1 № 27350
i

В ту­по­уголь­ном тре­уголь­ни­ке ABC AC = BC = ко­рень из: на­ча­ло ар­гу­мен­та: 17 конец ар­гу­мен­та , AH  — вы­со­та, CH = 4. Най­ди­те  тан­генс ACB.


Ответ:

7
Тип 8 № 27502
i

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−4; 8). Най­ди­те точку экс­тре­му­ма функ­ции f(x) на от­рез­ке [−2; 6].


Ответ:

8
Тип 3 № 245373
i

Най­ди­те угол CAD2 мно­го­гран­ни­ка, изоб­ра­жен­но­го на ри­сун­ке. Все дву­гран­ные углы мно­го­гран­ни­ка пря­мые. Ответ дайте в гра­ду­сах.


Ответ:

9
Тип 7 № 26745
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: ко­рень 9 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та умно­жить на ко­рень 18 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень 6 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та конец дроби .


Ответ:

10
Тип 9 № 28005
i

Плос­кий за­мкну­тый кон­тур пло­ща­дью S = 0,5 м в квад­ра­те на­хо­дит­ся в маг­нит­ном поле, ин­дук­ция ко­то­ро­го рав­но­мер­но воз­рас­та­ет. При этом со­глас­но за­ко­ну элек­тро­маг­нит­ной ин­дук­ции Фа­ра­дея в кон­ту­ре по­яв­ля­ет­ся ЭДС ин­дук­ции, зна­че­ние ко­то­рой, вы­ра­жен­ное в воль­тах, опре­де­ля­ет­ся фор­му­лой \mathcal E_i = aS ко­си­нус альфа , где α  — ост­рый угол между на­прав­ле­ни­ем маг­нит­но­го поля и пер­пен­ди­ку­ля­ром к кон­ту­ру, a = 4 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка минус 4 пра­вая круг­лая скоб­ка Тл/с  — по­сто­ян­ная, S  — пло­щадь за­мкну­то­го кон­ту­ра, на­хо­дя­ще­го­ся в маг­нит­ном поле  (в  м2). При каком ми­ни­маль­ном угле α  (в  гра­ду­сах) ЭДС ин­дук­ции не будет пре­вы­шать 10 в сте­пе­ни левая круг­лая скоб­ка минус 4 пра­вая круг­лая скоб­ка В ?


Ответ:

11
Тип 10 № 99573
i

Сме­ша­ли 4 литра 15-⁠про­цент­но­го вод­но­го рас­тво­ра не­ко­то­ро­го ве­ще­ства с 6 лит­ра­ми 25-⁠про­цент­но­го вод­но­го рас­тво­ра этого же ве­ще­ства. Сколь­ко про­цен­тов со­став­ля­ет кон­цен­тра­ция по­лу­чив­ше­го­ся рас­тво­ра?

 

Ко­неч­но, вме­сто лит­ров сле­до­ва­ло бы го­во­рить о ки­ло­грам­мах рас­тво­ров.


Ответ:

12

13
Тип 13 № 512356
i

а)  Ре­ши­те урав­не­ние  левая круг­лая скоб­ка 2 ко­си­нус в квад­ра­те x плюс синус x минус 2 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 5 тан­генс x конец ар­гу­мен­та =0.

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка Пи ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Тип 14 № 513094
i

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC сто­ро­на ос­но­ва­ния AB равна 12, а бо­ко­вое ребро SA равно 8. Точки M и N  — се­ре­ди­ны рёбер SA и SB со­от­вет­ствен­но. Плос­кость α со­дер­жит пря­мую MN и пер­пен­ди­ку­ляр­на плос­ко­сти ос­но­ва­ния пи­ра­ми­ды.

а)  До­ка­жи­те, что плос­кость α делит ме­ди­а­ну CE ос­но­ва­ния в от­но­ше­нии 5 : 1, счи­тая от точки C.

б)  Най­ди­те объём пи­ра­ми­ды, вер­ши­ной ко­то­рой яв­ля­ет­ся точка C, а ос­но­ва­ни­ем  — се­че­ние пи­ра­ми­ды SABC плос­ко­стью α.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Тип 15 № 519474
i

Ре­ши­те не­ра­вен­ство  дробь: чис­ли­тель: 6 в сте­пе­ни x минус 4 умно­жить на 3 в сте­пе­ни x , зна­ме­на­тель: x умно­жить на 2 в сте­пе­ни x минус 5 умно­жить на 2 в сте­пе­ни x минус 4x плюс 20 конец дроби мень­ше или равно дробь: чис­ли­тель: 1, зна­ме­на­тель: x минус 5 конец дроби .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Тип 17 № 517502
i

Точки E и K  — со­от­вет­ствен­но се­ре­ди­ны сто­рон CD и AD квад­ра­та ABCD. Пря­мая BE пе­ре­се­ка­ет­ся с пря­мой CK в точке O.

а)  До­ка­жи­те, что во­круг четырёхуголь­ни­ка ABOK можно опи­сать окруж­ность.

б)  Най­ди­те AO, если сто­ро­на квад­ра­та равна 1.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Тип 16 № 515728
i

15-го ян­ва­ря пла­ни­ру­ет­ся взять кре­дит в банке на 18 ме­ся­цев. Усло­вия его воз­вра­та та­ко­вы:

—  1-⁠го числа каж­до­го ме­ся­ца долг воз­рас­та­ет на 2% по срав­не­нию с кон­цом преды­ду­ще­го ме­ся­ца;

—  со 2-⁠го по 14-⁠е число каж­до­го ме­ся­ца не­об­хо­ди­мо вы­пла­тить часть долга;

—  15-⁠го числа каж­до­го ме­ся­ца долг дол­жен быть на одну и ту же ве­ли­чи­ну мень­ше долга на 15-⁠е число преды­ду­ще­го ме­ся­ца.

Сколь­ко про­цен­тов от суммы кре­ди­та со­став­ля­ет общая сумма денег, ко­то­рую нужно вы­пла­тить банку за весь срок кре­ди­то­ва­ния?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Тип 18 № 517432
i

Най­ди­те все зна­че­ния па­ра­мет­ра а, при каж­дом из ко­то­рых урав­не­ние

 ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус 4x конец ар­гу­мен­та умно­жить на \ln левая круг­лая скоб­ка 9x в квад­ра­те минус a в квад­ра­те пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус 4x конец ар­гу­мен­та умно­жить на \ln левая круг­лая скоб­ка 3x минус a пра­вая круг­лая скоб­ка

имеет хотя бы одно ре­ше­ние.

Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Тип 19 № 513263
i

В одном из за­да­ний на кон­кур­се бух­гал­те­ров тре­бу­ет­ся вы­дать пре­мии со­труд­ни­кам не­ко­то­ро­го от­де­ла на общую сумму 600 000 руб­лей (раз­мер пре­мии каж­до­го со­труд­ни­ка  — целое число, крат­ное 1000). Бух­гал­те­ру дают рас­пре­де­ле­ние пре­мий, и он дол­жен их вы­дать без сдачи и раз­ме­на, имея 100 купюр по 1000 руб­лей и 100 купюр по 5000 руб­лей.

а)  Удаст­ся ли вы­пол­нить за­да­ние, если в от­де­ле 40 со­труд­ни­ков и все долж­ны по­лу­чить по­ров­ну?

б)  Удаст­ся ли вы­пол­нить за­да­ние, если ве­ду­ще­му спе­ци­а­ли­сту надо вы­дать 40 000 руб­лей, а осталь­ные по­де­лить по­ров­ну на 70 со­труд­ни­ков?

в)  При каком наи­боль­шем ко­ли­че­стве со­труд­ни­ков в от­де­ле за­да­ние удаст­ся вы­пол­нить при любом рас­пре­де­ле­нии раз­ме­ров пре­мий?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.