СДАМ ГИА






Каталог заданий. Сюжетные задачи
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Задания Д13 C7 № 505591

В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, т. е. прыгают друг через друга. При этом, если кузнечик A прыгает через кузнечика B, то после прыжка он оказывается от B на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в четвёртую вершину квадрата?

Источник: А. Ларин: Тренировочный вариант № 40.

2
Задания Д13 C7 № 505597

Два игрока ходят по очереди. Перед началом игры у них есть поровну горошин. Ход состоит в передаче сопернику любого числа горошин. Не разрешается передавать такое количество горошин, которое до этого уже кто‐то в этой партии передавал. Ноль горошин тоже передавать нельзя. Тот, кто не может сделать очередной ход по правилам, — считается проигравшим. Кто — начинающий или его соперник — победит в этой игре, как бы ни играл его партнёр?

Рассмотрите случаи:

а) У каждого по две горошины;

б) У каждого по три горошины;

в) Общий случай: у каждого по N горошин.

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 41.
Решение · ·

3
Задания Д13 C7 № 505603

Трое друзей играли в шашки. Один из них сыграл 25 игр, а другой — 17 игр. Мог ли третий участник сыграть  

а) 34;

б) 35;

в) 56 игр?

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 42.

4
Задания Д13 C7 № 505621

Леша задумал двузначное число (от 10 до 99). Гриша пытается его отгадать, называя двузначные числа. Если Гриша правильно называет число, или же одну цифру называет правильно, а в другой ошибается не более чем на единицу, то Леша отвечает «тепло»; в остальных случаях Леша отвечает «холодно». (Например, если задумано число 65, то назвав 65, 64, 66, 55 или 75, Гриша услышит в ответ «тепло», а в остальных случаях услышит «холодно».)

а) Покажите, что нет способа, при котором Гриша гарантированно узнает число, истратив 18 попыток.

б) Придумайте способ, при котором Гриша гарантированно узнает число, истратив 24 попытки (какое бы число ни задумал Леша).

в) А за 22 попытки получится?

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 45.

5
Задания Д13 C7 № 505645

В ботаническом справочнике каждое растение характеризуется 100 признаками (каждый признак либо присутствует, либо отсутствует). Растения считаются "непохожими", если они различаются не менее, чем по 51 признаку.

а) Покажите, что в справочнике не может находиться больше 50 попарно непохожих растений.

б) А может ли быть 50?

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 48.

6
Задания Д13 C7 № 505657

школьников хотят разделить поровну одинаковых шоколадок, при этом

каждую шоколадку можно разломить не более одного раза.

а) При каких это возможно, если

б) При каких и это возможно?

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 50.

7
Задания Д13 C7 № 505699

Даны N синих и N красных палочек, причем сумма длин синих палочек равна сумме длин красных. Известно, что из синих палочек можно сложить N‐угольник, и из красных — тоже. Всегда ли можно выбрать одну синюю и одну красную палочки и перекрасить их (синюю — в красный цвет, а красную — в синий) так, что снова из синих палочек можно будет сложить N‐угольник, и из красных — тоже?

Решите задачу

а) для N = 3;

б) для произвольного натурального N > 3.

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 57.

8
Задания Д13 C7 № 505729

а) Скупой рыцарь хранит золотые монеты в шести сундуках. Однажды, пересчитывая их, он заметил, что если открыть любые два сундука, то можно разложить лежащие в них монеты поровну в эти два сундука. Еще он заметил, что если открыть любые 3, 4 или 5 сундуков, то тоже можно переложить лежащие в них монеты таким образом, что во всех открытых сундуках станет поровну монет. Тут ему почудился стук в дверь, и старый скряга так и не узнал, можно ли разложить все монеты поровну по всем шести сундукам. Можно ли, не заглядывая в заветные сундуки, дать точный ответ на этот вопрос?

б) А если сундуков было восемь, а cкупой рыцарь мог разложить поровну монеты, лежащие в любых 2, 3, 4, 5, 6 или 7 сундуках?

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 62.

9
Задания Д13 C7 № 505747

За круглым столом сидят 4 гнома. Перед каждым стоит кружка с молоком. Один из гномов переливает ¼ своего молока соседу справа. Затем сосед справа делает то же самое. Затем то же самое делает следующий сосед справа и наконец четвёртый гном ¼ оказавшегося у него молока наливает первому. Во всех кружках вместе молока 2 л.

Сколько молока было первоначально в кружках, если

а) в конце у всех гномов молока оказалось поровну?

б) в конце у всех гномов оказалось молока столько, сколько было в начале?

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 65.

10
Задания Д13 C7 № 505753

Петин счет в банке содержит 500 долларов. Банк разрешает совершать операции только двух видов: снимать 300 долларов или добавлять 198 долларов.

а) Какую максимальную сумму Петя может снять со счета, если других денег у него нет?

б) Какое наименьшее число операций для этого потребуется?

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 66.

11
Задания Д13 C7 № 505765

Имеется семь стаканов с водой: первый стакан заполнен водой наполовину, второй — на треть, третий — на четверть, четвертый — на одну пятую, пятый — на одну восьмую, шестой — на одну девятую, и седьмой — на одну десятую. Разрешается переливать всю воду из одного стакана в другой или переливать воду из одного стакана в другой до тех пор, пока он не заполнится доверху. Может ли после нескольких переливаний какой‐нибудь стакан оказаться заполненным

а) на одну двенадцатую;

б) на одну шестую?

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 68.

12
Задания Д13 C7 № 505777

Компьютер может производить одну операцию: брать среднее арифметическое двух целых чисел. Даны три числа: m, n и 0, причем m и n не имеют общих делителей и m < n Докажите, что с помощью компьютера из них можно получить

а) единицу;

б) любое целое число от 1 до n.

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 70.

13
Задания Д13 C7 № 505801

В Мексике экологи добились принятия закона, по которому каждый автомобиль хотя бы один день в неделю не должен ездить (владелец сообщает полиции номер автомобиля и «выходной» день недели этого автомобиля). В некоторой семье все взрослые желают ездить ежедневно (каждый — по своим делам!). Сколько автомобилей (как минимум) должно быть в семье, если взрослых в ней

а) 5 человек?

б) 8 человек?

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 74.

14
Задания Д13 C7 № 505831

Два шахматиста играют между собой в шахматы с часами (сделав ход, шахматист останавливает свои часы и пускает часы другого). Известно, что после того, как оба сделали по 40 ходов, часы обоих шахматистов показывали одно и то же время: 2 часа 30 мин.

а) Докажите, что в ходе партии был момент, когда часы одного обгоняли часы другого не менее, чем на 1 мин. 51 сек.

б) Можно ли утверждать, что в некоторый момент разница показаний часов была равна 2 мин.?

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 79.

15
Задания Д13 C7 № 505869

У Лены три набора, в каждом из которых одинаковое количество ручек (больше 1). У Юли несколько (больше 1) наборов ручек, по 5 штук в каждом.

а) При каком количестве наборов у Юли, количество всех ручек у Лены нечетно, если всего у девочек 105 ручек?

б) Можно ли разложить все ручки Юли и Лены в 12 наборов по 12 ручек в каждом?

в) Можно ли разложить все ручки Юли и Лены в k наборов по k ручек в каждом (k > 3)?

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 4.

16
Задания Д13 C7 № 505893

Лужков и Батурина поворачивают с Рублевки на МКАД в разные стороны — Лужков — налево, Батурина — направо. За сколько минут каждый из них проезжает полный круг по МКАД, если известно, что Лужков тратит на 12 минут меньше Батуриной, при этом проезжая круг не быстрее 31 минуты. Время проезда одного круга измеряется целым числом минут и их седьмая встреча произошла снова на Рублёвке.

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 8.

17
Задания Д13 C7 № 505899

Инспектор ДПС майор Худаков получил указание начальства останавливать те автомобили, трехзначный госномер которых n удовлетворяет следующим требованиям: если выписать все целые числа от 1 до n и посчитать количество записанных цифр, то получится число, записанное теми же цифрами, что и n, но в обратном порядке. Сначала майор попробовал выполнять требуемые вычисления для каждого автомобиля в режиме реального времени мелом на асфальте, но мел скоро закончился. Помогите майору определить номера нужных автомобилей.

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 9.

18
Задания Д13 C7 № 505905

Губернатор Титькин решил организовать автобусное движение между деревнями Верхнее и Нижнее Гадюкино. Автобусы‐экспрессы будут следовать из Нижнего Гадюкино в Верхнее без остановок круглосуточно с интервалом ровно 7 минут, останавливаться в конечном пункте на какое‐то время и отправляться обратно, тратя на дорогу в одну сторону ровно 25 минут. При этом на конечных остановках не должно находиться более одного автобуса одновременно. Сколько автобусов потребуется купить губернатору?

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 10.

19
Задания Д13 C7 № 505935

В школьной олимпиаде по математике участвовало 100 человек, по физике — 50 человек, по информатике — 48 человек. Когда каждого из учеников спросили, в скольких олимпиадах он участвовал, ответ «по крайней мере в двух» дали в два раза меньше человек, чем ответ «не менее, чем в одной», а ответ «в трех» — втрое меньше человек, чем ответ «не менее, чем в одной». Сколько всего учеников приняло участие в этих олимпиадах?

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 15.

20
Задания Д13 C7 № 505947

а) На постоялом дворе остановился путешественник, и хозяин согласился в качестве уплаты за проживание брать кольца золотой цепочки, которую тот носил на руке. Но при этом он поставил условие, чтобы оплата была ежедневной: каждый день хозяин должен был иметь на одно кольцо больше, чем в предыдущий. Замкнутая в кольцо цепочка содержала 11 колец, а путешественник собирался прожить ровно 11 дней, поэтому он согласился. Какое наименьшее число колец он должен распилить, чтобы иметь возможность платить хозяину?

б) Из скольких колец должна состоять цепочка, чтобы путешественник мог прожить на постоялом дворе наибольшее число дней при условии, что он может распилить только n колец?

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 17.

21
Задания Д13 C7 № 505953

Требуется сделать набор гирек, каждая из которых весит целое число граммов, с помощью которых можно взвесить любой целый вес от 1 грамма до 55 граммов включительно даже в том случае, если некоторые гирьки потеряны (гирьки кладутся на одну чашку весов, измеряемый вес — на другую).

а) необходимо подобрать 10 гирек, из которых может быть потеряна любая одна;

б) необходимо подобрать 12 гирек, из которых могут быть потеряны любые две. (В обоих случаях докажите, что найденный Вами набор гирек обладает требуемыми свойствами.)

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 18.

22
Задания Д13 C7 № 505983

Автобусные билеты имеют номера от 000000 до 999999. Билет называется счастливым, если сумма первых трех цифр его номера равна сумме последних трех его цифр. Докажите, что:

а) число всех счастливых билетов четно;

б) сумма номеров всех счастливых билетов делится на 999.

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 23.

23
Задания Д13 C7 № 505989

Скажем, что колода из 52 карт сложена правильно, если любая пара лежащих рядом карт совпадает по масти или по достоинству, то же верно для верхней и нижней карты, и наверху лежит туз пик. Докажите, что число способов сложить колоду правильно

а) делится на 12!;

б) делится на 13!.

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 24.

24
Задания Д13 C7 № 505995

Группа психологов разработала тест, пройдя который, каждый человек получает оценку — число Q — показатель его умственных способностей (чем больше Q, тем больше способности). За рейтинг страны принимается среднее арифметическое значений Q всех жителей страны.

а) Группа граждан страны A эмигрировала в страну B. Мог ли при этом у обеих стран вырасти рейтинг?

б) После этого группа граждан страны B (в числе которых могут быть и бывшие эмигранты из A) эмигрировала в страну A. Возможно ли, что рейтинги обеих стран опять выросли?

в) Группа граждан страны A эмигрировала в страну B, а группа граждан B — в страну C. В результате рейтинги каждой страны оказались выше первоначальных. После этого направление миграционных потоков изменилось на противоположное – часть жителей C переехала в B, а часть жителей B – в A. Оказалось, что в результате рейтинги всех стран опять выросли (по сравнению с теми, что были после первого переезда, но до начала второго). Может ли такое быть (если да, то как, если нет, то почему)? Предполагается, что за рассматриваемое время Q граждан не изменилось, никто не умер и не родился.

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 25.

25
Задания Д13 C7 № 506001

В школе, где учатся Поля, Маня и Дуня, есть длинный коридор вдоль одной из стен которого расположен длинный ряд из n ячеек, занумерованных натуральными числами от 1 до n, закрывающихся на замки, в которых школьники могут хранить свои личные вещи. Однажды, придя в школу в выходной день, Поля обнаружила все ячейки открытыми. Она стала обходить ряд ячеек сначала до конца, закрывая на замок каждую вторую ячейку. Достигнув конца ряда, она развернулась и снова стала закрывать на замок каждую вторую ячейку из тех, которые еще были открыты. Таким образом Поля продолжала обходить ряд и закрывать на замок ячейки до тех пор, пока осталась незакрытой одна ячейка.

Обозначим номер последней открытой ячейки. Например, если количество ячеек то как показано на рисунке

 

123456789101112131415
123456789101112131415
13579111315
371115
311

 

а) Найдите

Докажите, что:

б) не существует натурального числа такого что

в) существует бесконечное множество натуральных чисел таких что

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 26.

26
Задания Д13 C7 № 506007

Дайте обоснованные ответы на следующие вопросы.

а) В мешке находятся 1 желтый, 1 зеленый и 2 красных шара. Из мешка случайным образом вынимают 2 шара разного цвета и заменяют одним шаром третьего цвета. Этот процесс продолжают до тех пор, пока все оставшиеся шары в мешке не окажутся одного цвета (возможно, что при этом в мешке останется один шар) Какого цвета шары (или шар) могут остаться в мешке?

б) В мешке 3 желтых, 4 зеленых и 5 красных шаров. Какого цвета шары (или шар) могут остаться в мешке в конце после применения описанной в предыдущем пункте процедуры?

в) В мешке находятся 3 желтых, 4 зеленых и 5 красных шаров. Из мешка случайным образом вынимают 2 шара разного цвета и заменяют двумя шарами третьего цвета. Можно ли, применяя эту процедуру многократно, добиться того, чтобы в мешке оказались шары одного цвета? Если можно, то какого цвета эти шары?

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 27.

27
Задания Д13 C7 № 506013

У Кости была кучка из 100 камешков. Каждым ходом он делил какую-то из кучек на две меньших, пока у него не оказалось 100 кучек по одному камешку.

а) возможно ли, что в какой-то момент в каких-то 30 кучках было ровно 60 камешков;

б) возможно ли, что в какой-то момент в каких-то 20 кучках было в сумме ровно 60 камешков;

в) мог ли Костя действовать так, чтобы ни в какой момент не нашлось 19 кучек, в которых в сумме ровно 60 камешков?

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 28.

28
Задания Д13 C7 № 506025

Рассматривается набор гирь, каждая из которых весит целое число граммов, а общий вес всех гирь равен 500 граммов. Такой набор называется правильным, если любое тело, имеющее вес, выраженный целым числом граммов от 1 до 500, может быть уравновешено некоторым количеством гирь набора, и притом единственным образом (тело кладется на одну чашу весов, гири – на другую; два способа уравновешивания, различающиеся лишь заменой некоторых гирь на другие того же веса, считаются одинаковыми).

а) Приведите пример правильного набора, в котором не все гири по одному грамму.

б) Сколько существует различных правильных наборов?

(Два набора различны, если некоторая гиря участвует в этих наборах не одинаковое число раз.)

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 30.

29
Задания Д13 C7 № 506031

а) В классе была дана контрольная. Известно, что по крайней мере две трети задач этой контрольной оказались трудными: каждую такую задачу не решили по крайней мере две трети школьников. Известно также, что по крайней мере две трети школьников класса написали контрольную хорошо: каждый такой школьник решил по крайней мере две трети задач контрольной. Могло ли такое быть?

б) Изменится ли ответ в этой задаче, если заменить везде в ее условии две трети на три четверти?

в) Изменится ли ответ в этой задаче, если заменить везде в ее условии две трети на семь девятых?

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 31.

30
Задания Д13 C7 № 506037

Банкомат обменивает монеты: дублоны на пистоли и наоборот. Пистоль стоит s дублонов, а дублон — 1/s пистолей, где s — не обязательно целое. В банкомат можно вбросить любое число монет одного вида, после чего он выдает в обмен монеты другого вида, округляя результат до ближайшего целого числа (если ближайших чисел два, выбирается большее).

а) Может ли так быть, что обменяв сколько-то дублонов на пистоли, а затем обменяв полученные пистоли на дублоны, мы получим больше дублонов, чем было в начале?

б) Если да, то может ли случится, что полученное число дублонов еще увеличится, если проделать с ними такую же операцию?

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 32.

31
Задания Д13 C7 № 506043

Геологи взяли в экспедицию 80 банок консервов, веса которых все известны и различны (имеется список). Через некоторое время надписи на банках стали нечитаемыми, и только завхоз знает где что. Он может все это доказать (т. е. обосновать, что в какой банке находится), не вскрывая консервов и пользуясь только сохранившимся списком и двухчашечными весами со стрелкой, показывающей разницу весов на чашках. Докажите, что ему для этой цели

а) достаточно четырех взвешиваний;

б) недостаточно трех взвешиваний.

Комментарий. Отметим еще раз, что завхоз должен обосновать, что в какой банке находится для всех 80 банок.

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 33.

32
Задания Д13 C7 № 506049

Среди любых десяти из шестидесяти школьников найдется три одноклассника. Обязательно ли среди всех шестидесяти школьников найдется

а) 15 одноклассников;

б) 16 одноклассников?

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 34.

33
Задания Д13 C7 № 506055

Тридцать три богатыря нанялись охранять Лукоморье за 240 монет. Хитрый дядька Черномор может разделить богатырей на отряды произвольной численности (или записать всех в один отряд), а затем распределить все жалование между отрядами. Каждый отряд делит свои монеты поровну, а остаток отдает Черномору. Какое наибольшее количество монет может достаться Черномору, если:

а) жалование между отрядами Черномор распределяет как ему угодно;

б) жалование между отрядами Черномор распределяет поровну?

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 35.

34
Задания Д13 C7 № 506067

На шести елках сидят шесть сорок — по одной на каждой елке. Елки растут с интервалом в 10 м. Если какая-то сорока перелетает с одной елки на другую, то какая-нибудь, другая сорока обязательно перелетает на столько же метров, но в обратном направлении.

а) Могут ли все сороки собраться на одной елке?

б) А если сорок и елок семь?

в) А если елки стоят по кругу?

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 37.

35
Задания Д13 C7 № 506073

Имеются каменные глыбы: 50 штук по 800 кг, 60 штук по 1000 кг и 60 штук по 1500 кг (раскалывать глыбы нельзя).

а) Можно ли увезти все эти глыбы одновременно на 60 грузовиках, грузоподъемностью 5 тонн каждый, предполагая, что в грузовик выбранные глыбы поместятся?

б) Можно ли увезти все эти глыбы одновременно на 38 грузовиках, грузоподъемностью 5 тонн каждый, предполагая, что в грузовик выбранные глыбы поместятся?

в) Какое наименьшее количество грузовиков, грузоподъемностью 5 тонн каждый, понадобится, чтобы вывезти все эти глыбы одновременно, предполагая, что в грузовик выбранные глыбы поместятся?

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 38.

36
Задания Д13 C7 № 514573

На каждой из 28 костей домино написаны два целых числа, не меньших 0 и не больших 6 так, что они образуют все возможные пары по одному разу (0-0, 0-1, 0-2 и так далее до 6-6).

Все кости домино разложили на несколько кучек и для каждой кучки подсчитали сумму всех чисел на костях, находящихся в этой кучке. Оказалось, что полученные суммы образуют возрастающую арифметическую прогрессию.

а) Могло ли быть 7 кучек?

б) Могло ли быть 9 кучек?

в) Какое наибольшее количество кучек могло быть?

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 156.

37
Задания Д13 C7 № 514594

На проекте «Мисс Чмаровка−2016» выступление каждой участницы оценивают шесть судей. При этом каждый судья выставляет оценку — целое число баллов от 0 до 10 включительно. Известно, что за выступление Изольды Кабановой все члены жюри выставили различные оценки. По старой системе оценивания итоговый балл за выступление определяется как среднее арифметическое четырёх оставшихся оценок.

а) Могут ли итоговые баллы, вычисленные по старой и новой системам оценивания, оказаться одинаковыми?

б) Может ли разность итоговых баллов, вычисленных по старой и новой системам оценивания, оказаться равной 

в) Найдите наибольшее возможное значение разности итоговых баллов, вычисленных по старой и новой системам оценивания.

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 159.

Пройти тестирование по этим заданиям



     О проекте · Редакция

© Гущин Д. Д., 2011—2017


СПб ГУТ! С! Ф! У!