Вариант № 77556621

А. Ларин. Тренировочный вариант № 469.

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1

а)  Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та умно­жить на левая круг­лая скоб­ка ко­си­нус 4 x плюс 1 пра­вая круг­лая скоб­ка =2 ко­си­нус 2 x левая круг­лая скоб­ка 2 минус ко­си­нус 4 x пра­вая круг­лая скоб­ка .

б)  Най­ди­те все корни урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус 4 Пи ; минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

2

В ос­но­ва­нии пря­мой приз­мы ABCA1B1C1 лежит рав­но­бед­рен­ный тре­уголь­ник ABC с ос­но­ва­ни­ем AB. Точка P делит ребро AB в от­но­ше­нии AP : PB  =  1 : 3, а точка Q се­ре­ди­на ребра A1C1. Через се­ре­ди­ну M ребра BC про­ве­ли плос­кость α, пер­пен­ди­ку­ляр­ную от­рез­ку PQ.

а)  До­ка­жи­те, что плос­кость α делит ребро AC по­по­лам.

б)  Най­ди­те от­но­ше­ние, в ко­то­ром плос­кость α делит от­ре­зок A1C1, счи­тая от точки A1, если из­вест­но, что AB  =  AA1, AB : BC  =  2 : 7.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Тип 15 № 667318
i

Ре­ши­те не­ра­вен­ство: \left|1 минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те минус 5 x плюс 6 пра­вая круг­лая скоб­ка | мень­ше или равно 1 минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те минус 5 x плюс 6 пра­вая круг­лая скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Тип 16 № 667319
i

В июле 2025 года пла­ни­ру­ет­ся взять кре­дит на де­сять лет в раз­ме­ре 900 тыс. руб­лей. Усло­вия его воз­вра­та та­ко­вы:

  —  каж­дый ян­варь долг будет воз­рас­тать на 20% по срав­не­нию с кон­цом преды­ду­ще­го года;

  —  с фев­ра­ля по июнь каж­до­го года не­об­хо­ди­мо опла­тить одним пла­те­жом часть долга;

  —  в июле 2026, 2027, 2028, 2029 и 2030 годов долг дол­жен быть на какую‐то одну и ту же ве­ли­чи­ну мень­ше долга на июль преды­ду­ще­го года;

  —  в июле 2031, 2032, 2033, 2034 и 2035 годов долг дол­жен быть на дру­гую одну и ту же ве­ли­чи­ну мень­ше долга на июль преды­ду­ще­го года;

  —  к июлю 2035 года долг дол­жен быть вы­пла­чен пол­но­стью.

Из­вест­но, что сумма всех пла­те­жей после пол­но­го по­га­ше­ния кре­ди­та будет равна 1540 тыс. руб­лей. Сколь­ко руб­лей со­ста­вит пла­теж в 2035 году.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Тип 17 № 667320
i

Дан рав­но­сто­рон­ний тре­уголь­ник АВС. На сто­ро­не АС вы­бра­на точка М, се­ре­дин­ный пер­пен­ди­ку­ляр к от­рез­ку ВМ пе­ре­се­ка­ет сто­ро­ну АВ в точке E, а сто­ро­ну ВС в точке K.

а)  До­ка­жи­те, что угол АЕМ равен углу СМK.

б)  Най­ди­те от­но­ше­ние пло­ща­дей тре­уголь­ни­ков АЕМ и СМK, если AM : CM  =  1 : 4.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Тип 18 № 667321
i

Най­ди­те все зна­че­ния па­ра­мет­ра a, при каж­дом из ко­то­рых урав­не­ние

 левая круг­лая скоб­ка x минус 2 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 4 a минус a в квад­ра­те минус 3 конец ар­гу­мен­та пра­вая круг­лая скоб­ка левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: a в квад­ра­те плюс левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка a минус 1 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка =0

имеет не менее двух ре­ше­ний на от­рез­ке [1,5; 2,5].


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

7
Тип 19 № 667322
i

В порту име­ют­ся толь­ко за­пол­нен­ные кон­тей­не­ры, масса каж­до­го из ко­то­рых равна 20 тонн или 40 тонн. В не­ко­то­рых кон­тей­не­рах на­хо­дит­ся са­хар­ный песок. Ко­ли­че­ство кон­тей­не­ров с са­хар­ным пес­ком со­став­ля­ет 60% от об­ще­го числа кон­тей­не­ров.

а)  Может ли масса кон­тей­не­ров с са­хар­ным пес­ком со­став­лять 50% от общей массы?

б)  Может ли масса кон­тей­не­ров с са­хар­ным пес­ком со­став­лять 40% от общей массы?

в)  Какую наи­боль­шую долю в про­цен­тах может со­став­лять масса кон­тей­не­ров с са­хар­ным пес­ком от общей массы?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.