Заголовок: ЕГЭ по математике 29.03.2024. Досрочная волна.
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — математика профильная
Вариант № 75973633

ЕГЭ по математике 29.03.2024. Досрочная волна.

1.  
i

В тре­уголь­ни­ке ABC AC = BC. Внеш­ний угол при вер­ши­не B равен 107 гра­ду­сов. Най­ди­те угол C. Ответ дайте в гра­ду­сах.

2.  
i

На ко­ор­ди­нат­ной плос­ко­сти изоб­ра­же­ны век­то­ры \veca и  \vecb, ко­ор­ди­на­та­ми ко­то­рых яв­ля­ют­ся целые числа. Най­ди­те ска­ляр­ное про­из­ве­де­ние  \veca умно­жить на \vecb.

3.  
i

Шар впи­сан в ци­линдр. Пло­щадь пол­ной по­верх­но­сти ци­лин­дра равна 30. Най­ди­те пло­щадь по­верх­но­сти шара.

4.  
i

Ве­ро­ят­ность того, что на те­сти­ро­ва­нии по ма­те­ма­ти­ке уча­щий­ся А. верно решит боль­ше четырёх задач, равна 0,73. Ве­ро­ят­ность того, что А. верно решит боль­ше трёх задач, равна 0,86. Най­ди­те ве­ро­ят­ность того, что А. верно решит ровно 4 за­да­чи.

5.  
i

Иг­раль­ную кость бро­си­ли два раза. Из­вест­но, что шесть очков не вы­па­ли ни разу. Най­ди­те при этом усло­вии ве­ро­ят­ность со­бы­тия «сумма вы­пав­ших очков ока­жет­ся равна 10».

6.  
i

Ре­ши­те урав­не­ние 3 в сте­пе­ни левая круг­лая скоб­ка x минус 8 пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 81 конец дроби .

7.  
i

Най­ди­те зна­че­ние вы­ра­же­ния \log _256 минус \log _27.

8.  
i

На ри­сун­ке изоб­ра­жен гра­фик y = f' левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка   — про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−5; 5). Най­ди­те точку мак­си­му­ма функ­ции f(x).

9.  
i

Ав­то­мо­биль раз­го­ня­ет­ся на пря­мо­ли­ней­ном участ­ке шоссе с по­сто­ян­ным уско­ре­ни­ем a км/ч2. Ско­рость вы­чис­ля­ет­ся по фор­му­ле  v = ко­рень из: на­ча­ло ар­гу­мен­та: 2la конец ар­гу­мен­та , где l  — прой­ден­ный ав­то­мо­би­лем путь. Най­ди­те уско­ре­ние, с ко­то­рым дол­жен дви­гать­ся ав­то­мо­биль, чтобы, про­ехав один ки­ло­метр, при­об­ре­сти ско­рость 120 км/ч. Ответ вы­ра­зи­те в км/ч2.

10.  
i

Два ве­ло­си­пе­ди­ста од­но­вре­мен­но от­пра­ви­лись в 190⁠-⁠ки­ло­мет­ро­вый про­бег. Пер­вый ехал со ско­ро­стью, на 9 км/ч боль­шей, чем ско­рость вто­ро­го, и при­был к фи­ни­шу на 9 часов рань­ше вто­ро­го. Найти ско­рость ве­ло­си­пе­ди­ста, при­шед­ше­го к фи­ни­шу пер­вым. Ответ дайте в км/ч.

11.  
i

На ри­сун­ке изоб­ражён гра­фик функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =ax в квад­ра­те плюс bx плюс c. Най­ди­те f левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка .

12.  
i

Най­ди­те точку мак­си­му­ма функ­ции y=x в кубе минус 108x плюс 23.

13.  
i

а)  Ре­ши­те урав­не­ние 2 ко­си­нус x минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та синус в квад­ра­те x=2 ко­си­нус в кубе x.

б)  Опре­де­ли­те, какие из его кор­ней при­над­ле­жат от­рез­ку  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 2 конец дроби ; минус 2 Пи пра­вая квад­рат­ная скоб­ка .

14.  
i

В пра­виль­ной че­ты­рех­уголь­ной приз­ме ABCDA1B1C1D1 плос­кость α про­хо­дит через вер­ши­ны B1 и D, пе­ре­се­ка­ет сто­ро­ны AA1 и CC1 в точ­ках M и K со­от­вет­ствен­но, а се­че­ние приз­мы плос­ко­стью α яв­ля­ет­ся ром­бом.

а)  До­ка­жи­те, что точка M  — се­ре­ди­на ребра AA1.

б)  Най­ди­те вы­со­ту приз­мы, если пло­щадь ос­но­ва­ния равна 3, а пло­щадь се­че­ния равна 6.

15.  
i

Ре­ши­те не­ра­вен­ство  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 11 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 2 x в квад­ра­те плюс 1 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 11 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 32 x конец дроби плюс 1 пра­вая круг­лая скоб­ка боль­ше или равно ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 11 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 16 конец дроби плюс 1 пра­вая круг­лая скоб­ка .

16.  
i

Вадим яв­ля­ет­ся вла­дель­цем двух за­во­дов в раз­ных го­ро­дах. На за­во­дах про­из­во­дят­ся аб­со­лют­но оди­на­ко­вые то­ва­ры при ис­поль­зо­ва­нии оди­на­ко­вых тех­но­ло­гий. Если ра­бо­чие на одном из за­во­дов тру­дят­ся сум­мар­но t2 часов в не­де­лю, то за эту не­де­лю они про­из­во­дят t  еди­ниц то­ва­ра. За каж­дый час ра­бо­ты на за­во­де, рас­по­ло­жен­ном в пер­вом го­ро­де, Вадим пла­тит ра­бо­че­му 200 руб­лей, а на за­во­де, рас­по­ло­жен­ном во вто­ром го­ро­де,  — 300 руб­лей. Вадим готов вы­де­лять 1 200 000 руб­лей в не­де­лю на опла­ту труда ра­бо­чих. Какое наи­боль­шее ко­ли­че­ство еди­ниц то­ва­ра можно про­из­ве­сти за не­де­лю на этих двух за­во­дах?

17.  
i

Дан ост­ро­уголь­ный тре­уголь­ник ABC. Его вы­со­ты BB1 и CC1 пе­ре­се­ка­ют­ся в точке H.

а)  До­ка­жи­те, что \angle B A H = \angle B B_1 C_1.

б)  Най­ди­те рас­сто­я­ние от цен­тра опи­сан­ной окруж­но­сти тре­уголь­ни­ка ABC до сто­ро­ны BC, если C_1 B_1 = 18, а  \angle B A C = 30 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка .

18.  
i

Най­ди­те все зна­че­ния a, при каж­дом из ко­то­рых урав­не­ние

 ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус a в квад­ра­те конец ар­гу­мен­та = ко­рень из: на­ча­ло ар­гу­мен­та: 4 x в квад­ра­те минус левая круг­лая скоб­ка 4 a плюс 2 пра­вая круг­лая скоб­ка x плюс 2a конец ар­гу­мен­та

на от­рез­ке [0; 1] имеет ровно один ко­рень.

19.  
i

Дан набор цифр 0, 1, 2, 3, 5, 7, 9. Из него вы­би­ра­ют три раз­лич­ные цифры и со­став­ля­ют трёхзнач­ное число A. Из остав­ших­ся четырёх цифр со­став­ля­ют че­ты­рех­знач­ное число B. Из­вест­но, что число A крат­но 45 и число B крат­но 45.

а)  Может ли сумма чисел A + B быть равна 2205?

б)  Может ли сумма чисел A + B быть равна 3435?

в)  Чему равна наи­боль­шая воз­мож­ная сумма чисел A + B?