А. Ларин: Тренировочный вариант № 95.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
Дано уравнение
а) Решите уравнение.
б) Укажите корни, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
В правильной четырехугольной пирамиде PABCD высота PO равна а сторона основания равна 6. Из точки О на ребро PC опущен перпендикуляр ОН. Докажите, что прямая PC перпендикулярна прямой DH. Найдите угол между плоскостями, содержащими две соседние боковые грани.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
В треугольнике АВС на сторое ВС выбрана точка К так, что СК : ВК = 1 : 2. Точка Е — середина стороны АВ. Отрезок СЕ и АК пересекаются в точке Р.
а) Докажите, что треугольники ВРС и АРС имеют равные площади.
б) Найдите площадь треугольника АВР, если площадь треугольника АВС равна 120.
На следующей странице вам будет предложено проверить их самостоятельно.
8 марта Леня Голубков взял в банке 53 680 рублей в кредит на 4 года под 20% годовых, чтобы купить своей жене Рите новую шубу. Схема выплаты кредита следующая: утром 8 марта следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 20%), а вечером того же дня Леня переводит в банк определенную сумму ежегодного платежа (все четыре года эта сумма одинакова). Какую сумму сверх взятых 53 680 рублей должен будет выплатить банку Леня Голубков за эти четыре года?
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения параметра а, при которых система уравнений
имеет решение.
На следующей странице вам будет предложено проверить их самостоятельно.
Набор состоит из первых 22 натуральных чисел: 1; 2; 3;…; 21; 22.
А) Какое наибольшее количество чисел этого набора необходимо перемножить, чтобы получить куб натурального числа?
Б) Какое наибольшее количество чисел этого набора необходимо перемножить, чтобы получить квадрат натурального числа?
В) Какое наибольшее количество чисел этого набора необходимо перемножить, чтобы получить квадрат нечетного натурального числа?
На следующей странице вам будет предложено проверить их самостоятельно.