А. Ларин. Тренировочный вариант № 299.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
Основанием пирамиды SABCD является прямоугольник ABCD, в котором ВС = 2АВ. Диагонали прямоугольника ABCD пересекаются в точке О. Отрезок SO является высотой пирамиды SABCD. Из вершин А и С опущены перпендикуляры АР и CQ на ребро SB.
а) Докажите, что
б) Найдите двугранный угол пирамиды при ребре SB, если SB = BC.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство:
На следующей странице вам будет предложено проверить их самостоятельно.
Окружность с центром на диагонали АС трапеции ABCD (BC || AD) проходит через вершины А и В, касается стороны CD в точке С и пересекает основание AD в точке Е так, что AE = 8.
а) Найдите площадь трапеции ABCD.
б) Прямые CD и ВЕ пересекаются в точке Q. Найдите BQ.
На следующей странице вам будет предложено проверить их самостоятельно.
Завод закупает станки двух типов, на приобретение которых выделено 34 миллиона рублей. Станок первого типа занимает площадь 7 м2 (с учетом проходов), производит за смену 5000 единиц продукции и стоит 4 миллиона рублей. Станок второго типа занимает площадь 4 м2 (с учетом проходов), производит за смену 3000 единиц продукции и стоит 3 миллиона рублей. Станки должны быть размещены на площади, не превышающей 50 м2. Сколько станков каждого типа нужно приобрести, чтобы производить за смену наибольшее количество продукции?
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения параметра a, при каждом из которых система уравнений
не имеет решений.
На следующей странице вам будет предложено проверить их самостоятельно.
Имеется 2 миллиона рублей, которые надо полностью истратить на покупку путевок. Дома отдыха предлагают путевки трех типов: на 15, 27 и 45 дней. Стоимость путевок соответственно 21 тыс. руб., 40 тыс. руб. и 60 тыс. руб. за штуку.
а) Можно ли купить 15 путевок первого типа?
б) Какое наименьшее возможно число путевок второго типа можно купить?
в) Сколько и каких путевок надо купить, чтобы сделать число дней отдыха наибольшим?
На следующей странице вам будет предложено проверить их самостоятельно.