Заголовок: ЕГЭ по математике 25.06.2018. Основная волна, резервный день. Вариант 501 (часть 2)
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — математика профильная
Вариант № 19721039

ЕГЭ по математике 25.06.2018. Основная волна, резервный день. Вариант 501 (часть 2)

2.  
i

На ребре AB пра­виль­ной четырёхуголь­ной пи­ра­ми­ды SABCD с ос­но­ва­ни­ем ABCD от­ме­че­на точка Q, причём AQ : QB  =  1 : 2. Точка P  — се­ре­ди­на ребра AS.

а)  До­ка­жи­те, что плос­кость DPQ пер­пен­ди­ку­ляр­на плос­ко­сти ос­но­ва­ния пи­ра­ми­ды.

б)  Най­ди­те пло­щадь се­че­ния DPQ, если пло­щадь се­че­ния DSB равна 6.

3.  
i

Ре­ши­те не­ра­вен­ство  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби минус 1 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби плюс 1 пра­вая круг­лая скоб­ка мень­ше или равно ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 27x минус 1 пра­вая круг­лая скоб­ка .

4.  
i

Точка O  — центр окруж­но­сти, опи­сан­ной около ост­ро­уголь­но­го тре­уголь­ни­ка ABC, а BH  — вы­со­та этого тре­уголь­ни­ка.

а)  До­ка­жи­те, что углы ABH и CBO равны.

б)  Най­ди­те BH, если AB = 8, BC=9, BH=BO.

5.  
i

За­ви­си­мость ко­ли­че­ства Q (в шт., 0 мень­ше или равно Q мень­ше или равно 15000 пра­вая круг­лая скоб­ка куп­лен­но­го у фирмы то­ва­ра от цены P (в руб. за шт.) вы­ра­жа­ет­ся фор­му­лой  Q = 15000 минус P. За­тра­ты на про­из­вод­ство Q еди­ниц то­ва­ра со­став­ля­ют  3000 Q плюс 1000000 руб­лей. Кроме за­трат на про­из­вод­ство, фирма долж­на пла­тить налог t руб­лей  левая круг­лая скоб­ка 0 мень­ше t мень­ше 10000 пра­вая круг­лая скоб­ка с каж­дой про­из­ведённой еди­ни­цы то­ва­ра. Таким об­ра­зом, при­быль фирмы со­став­ля­ет  PQ минус 3000 Q минус 1000000 минус tQ руб­лей, а общая сумма на­ло­гов, со­бран­ных го­су­дар­ством, равна tQ руб­лей.

Фирма про­из­во­дит такое ко­ли­че­ство то­ва­ра, при ко­то­ром её при­быль мак­си­маль­на. При каком зна­че­нии t общая сумма на­ло­гов, со­бран­ных го­су­дар­ством, будет мак­си­маль­ной?

6.  
i

Най­ди­те все такие зна­че­ния па­ра­мет­ра a, при каж­дом из ко­то­рых урав­не­ние  левая круг­лая скоб­ка 4x минус x в квад­ра­те пра­вая круг­лая скоб­ка в квад­ра­те минус 32 ко­рень из: на­ча­ло ар­гу­мен­та: 4x минус x конец ар­гу­мен­та в квад­ра­те =a в квад­ра­те минус 14a имеет хотя бы одно ре­ше­ние.

7.  
i

За про­хож­де­ние каж­до­го уров­ня игры на план­ше­те можно по­лу­чить от одной до трёх звёзд. При этом заряд ак­ку­му­ля­то­ра план­ше­та умень­ша­ет­ся на 3 пунк­та при по­лу­че­нии трёх звёзд, на 6 пунк­тов при по­лу­че­нии двух звёзд и на 9 пунк­тов при по­лу­че­нии одной звез­ды. Витя прошёл не­сколь­ко уров­ней игры под­ряд.

а)  Мог ли заряд ак­ку­му­ля­то­ра умень­шить­ся ровно на 32 пунк­та?

б)  Сколь­ко уров­ней игры было прой­де­но, если заряд ак­ку­му­ля­то­ра умень­шил­ся на 33 пунк­та и сум­мар­но было по­лу­че­но 17 звёзд?

в)  За прой­ден­ный уро­вень на­чис­ля­ет­ся 9000 очков при по­лу­че­нии трёх звёзд, 5000  — при по­лу­че­нии двух звёзд и 2000  — при по­лу­че­нии одной звез­ды. Какое наи­боль­шее ко­ли­че­ство очков мог по­лу­чить Витя, если заряд ак­ку­му­ля­то­ра умень­шил­ся на 33 пунк­та и сум­мар­но было по­лу­че­но 17 звёзд?

 

При­ме­ча­ние ре­дак­ции Решу ЕГЭ.

В п. а) счи­тай­те на­чаль­ный заряд до­ста­точ­но боль­шим.