Задания
Версия для печати и копирования в MS Word
Спрятать решение

Ре­ше­ние.

а)  За­пи­шем ис­ход­ное урав­не­ние в виде:

2 ко­си­нус x левая круг­лая скоб­ка 1 минус ко­си­нус в квад­ра­те x пра­вая круг­лая скоб­ка минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та синус в квад­ра­те x=0 рав­но­силь­но синус в квад­ра­те x левая круг­лая скоб­ка 2 ко­си­нус x минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та пра­вая круг­лая скоб­ка =0 рав­но­силь­но
 рав­но­силь­но со­во­куп­ность вы­ра­же­ний  новая стро­ка синус x=0,  новая стро­ка ко­си­нус x= дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби  конец со­во­куп­но­сти . рав­но­силь­но со­во­куп­ность вы­ра­же­ний  новая стро­ка x= Пи n,  новая стро­ка x= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи n,  новая стро­ка x= минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи n, конец со­во­куп­но­сти . n при­над­ле­жит Z .

б)  Корни, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 2 конец дроби ; минус 2 Пи пра­вая квад­рат­ная скоб­ка , от­бе­рем с по­мо­щью чис­ло­вой окруж­но­сти от­бе­рем корни, По­лу­чим числа:  минус 3 Пи ,  минус дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 6 конец дроби ,  минус 2 Пи .

 

Ответ: а)  левая фи­гур­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи n, дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи n, Пи n : n при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка ; б)  минус 3 Пи ,  минус дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 6 конец дроби ,  минус 2 Пи .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах.2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а),

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния пунк­та а) и пунк­та б).

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2

Аналоги к заданию № 520973: 500407 520980 661142 ... Все

Источники:
Классификатор алгебры: Ос­нов­ное три­го­но­мет­ри­че­ское тож­де­ство и его след­ствия, Три­го­но­мет­ри­че­ские урав­не­ния, Три­го­но­мет­ри­че­ские урав­не­ния, ре­ша­е­мые раз­ло­же­ни­ем на мно­жи­те­ли
Методы алгебры: Груп­пи­ров­ка