Вариант № 14963066

ЕГЭ — 2017. Основная волна 02.06.2017. Вариант 401 (C часть).

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Тип 12 № 517459

а) Решите уравнение: 3 логарифм по основанию 8 в квадрате ( синус x) минус 5 логарифм по основанию 8 ( синус x) минус 2=0

б) Определите, какие из его корней принадлежат отрезку  левая квадратная скобка минус дробь: числитель: 7 Пи , знаменатель: 2 конец дроби ; минус 2 Пи правая квадратная скобка .


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Тип 13 № 517460

Основанием прямой треугольной призмы ABCA1B1C1 является прямоугольный треугольник ABC с прямым углом C. Прямые CA1 и AB1 перпендикулярны.

а) Докажите, что AA1 = AC.

б) Найдите расстояние между прямыми CA1 и AB1, если AC = 6, BC = 3.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Тип 14 № 517461

Решите неравенство:  дробь: числитель: 3 в степени x плюс 9, знаменатель: 3 в степени x минус 9 конец дроби плюс дробь: числитель: 3 в степени x минус 9, знаменатель: 3 в степени x плюс 9 конец дроби больше или равно дробь: числитель: 4 умножить на 3 в степени (x плюс 1) плюс 144, знаменатель: 9 в степени x минус 81 конец дроби .


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Тип 16 № 517462

Две окружности с центрами O1 и O2 пересекаются в точках A и B, причём точки O1 и O2 лежат по разные стороны от прямой AB. Продолжения диаметра CA первой окружности и хорды CB этой окружности пересекают вторую окружность в точках D и E соответственно.

а) Докажите, что треугольники CBD и O1AO2 подобны.

б) Найдите AD, если \angle DAE=\angle BAC, радиус второй окружности втрое больше радиуса первой и AB = 3.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Тип 15 № 517463

15-го января планируется взять кредит в банке на некоторый срок (целое число месяцев). Условие его выплаты таковы:

— 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

На сколько месяцев планируется взять кредит, если известно, что общая сумма выплат после полного погашения кредита на 30% больше суммы, взятой в кредит?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Тип 17 № 517464

Найдите все значения а, при каждом из которых уравнение

\ln (3a минус x)\ln(2x плюс 2a минус 5)=\ln(3a минус x)\ln(x минус a)

имеет ровно один корень на отрезке [0; 2].


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

7
Тип 18 № 517465

Каждый из 28 студентов писал или одну из двух контрольных работ, или написал обе контрольные работы. За каждую работу можно было получить целое число баллов от 0 до 20 включительно. По каждой из двух контрольных работ в отдельности средний балл составил 15. Затем каждый студент назвал наивысший из своих баллов (если студент писал одну работу, то он назвал балл за неё). Среднее арифметическое названных баллов равно S.

а) Приведите пример, когда S < 15.

б) Могло ли оказаться, что только два студента написали обе контрольные работы, если S = 13?

в) Какое наименьшее количество студентов могло написать обе контрольные работы, если S = 13?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить тестирование, свериться с ответами, увидеть решения.