Задания
Версия для печати и копирования в MS Word
Тип 13 № 555618
i

а)  Ре­ши­те урав­не­ние 2 ко­си­нус в квад­ра­те левая круг­лая скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби плюс x пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та синус x.

б)  Най­ди­те все его корни, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус 3 Пи ; минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

Спрятать решение

Ре­ше­ние.

а)  Ис­поль­зуя фор­му­лу при­ве­де­ния:  ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби плюс x пра­вая круг­лая скоб­ка = синус x. Далее имеем:

2 синус в квад­ра­те x = ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та синус x рав­но­силь­но синус x умно­жить на левая круг­лая скоб­ка синус x минус дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка = 0 рав­но­силь­но

 рав­но­силь­но со­во­куп­ность вы­ра­же­ний синус x = 0, синус x = дробь: чис­ли­тель: ко­рень из 3 }2 конец со­во­куп­но­сти . рав­но­силь­но со­во­куп­ность вы­ра­же­ний x = Пи k, x = дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k, x = дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k, конец со­во­куп­но­сти . k при­над­ле­жит \mathbb{Z, зна­ме­на­тель: . конец дроби

б)  С по­мо­щью чис­ло­вой окруж­но­сти отберём корни, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус 3 Пи ; минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка . По­лу­чим корни (см. рис.):  минус 3 Пи , минус 2 Пи , минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 3 конец дроби .

 

Ответ: а)  левая фи­гур­ная скоб­ка Пи k, дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k, дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k :k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка ; б)  минус 3 Пи , минус 2 Пи , минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 3 конец дроби .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах.2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а),

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния пунк­та а) и пунк­та б).

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2
Классификатор алгебры: Три­го­но­мет­ри­че­ские урав­не­ния, Три­го­но­мет­ри­че­ские урав­не­ния, ре­ша­е­мые раз­ло­же­ни­ем на мно­жи­те­ли
Методы алгебры: Фор­му­лы двой­но­го угла, Фор­му­лы при­ве­де­ния