Задания
Версия для печати и копирования в MS Word
Тип 13 № 501455
i

а)  Ре­ши­те урав­не­ние 2 синус в квад­ра­те левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс x пра­вая круг­лая скоб­ка = минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ко­си­нус x.

 

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие про­ме­жут­ку  левая квад­рат­ная скоб­ка минус 3 Пи , минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка

Спрятать решение

Ре­ше­ние.

а)  Пре­об­ра­зу­ем урав­не­ние:

2 ко­си­нус в квад­ра­те x= минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ко­си­нус x рав­но­силь­но 2 ко­си­нус в квад­ра­те x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ко­си­нус x=0 рав­но­силь­но

 

Not match begin/end align

 

б)  При по­мо­щи три­го­но­мет­ри­че­ской окруж­но­сти отберём корни урав­не­ния, при­над­ле­жа­щие ин­тер­ва­лу

 левая квад­рат­ная скоб­ка минус 3 Пи , минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка . По­лу­чим числа:  минус дробь: чис­ли­тель: 17 Пи , зна­ме­на­тель: 6 конец дроби ;  минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби ;  минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби .

 

Ответ: а)  левая фи­гур­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k, минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k, дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k, k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка ; б)  минус дробь: чис­ли­тель: 17 Пи , зна­ме­на­тель: 6 конец дроби ;  минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби ;  минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах.2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а),

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния пунк­та а) и пунк­та б).

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2
Классификатор алгебры: Три­го­но­мет­ри­че­ские урав­не­ния, Три­го­но­мет­ри­че­ские урав­не­ния, ре­ша­е­мые раз­ло­же­ни­ем на мно­жи­те­ли
Методы алгебры: Фор­му­лы при­ве­де­ния