Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — математика профильная
Варианты заданий
1.  
i

Най­ди­те все зна­че­ния па­ра­мет­ра а, при каж­дом из ко­то­рых урав­не­ние

 ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус 4x конец ар­гу­мен­та умно­жить на \ln левая круг­лая скоб­ка 9x в квад­ра­те минус a в квад­ра­те пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус 4x конец ар­гу­мен­та умно­жить на \ln левая круг­лая скоб­ка 3x минус a пра­вая круг­лая скоб­ка

имеет хотя бы одно ре­ше­ние.
2.  
i

Най­ди­те все зна­че­ния а, при каж­дом из ко­то­рых урав­не­ние

 ко­рень из: на­ча­ло ар­гу­мен­та: 3x минус 2 конец ар­гу­мен­та умно­жить на \ln левая круг­лая скоб­ка x минус a пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 3x минус 2 конец ар­гу­мен­та умно­жить на \ln левая круг­лая скоб­ка 2x плюс a пра­вая круг­лая скоб­ка

имеет хотя бы одно ре­ше­ние на от­рез­ке [0; 1].

3.  
i

Най­ди­те все зна­че­ния а, при каж­дом из ко­то­рых урав­не­ние

 ко­рень из: на­ча­ло ар­гу­мен­та: 4x минус 3 конец ар­гу­мен­та \ln левая круг­лая скоб­ка 2x минус a пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 4x минус 3 конец ар­гу­мен­та \ln левая круг­лая скоб­ка 3x плюс a пра­вая круг­лая скоб­ка

имеет ровно один ко­рень на от­рез­ке [0; 1].

4.  
i

Найти все зна­че­ния a, при каж­дом из ко­то­рых урав­не­ние

 ко­рень из: на­ча­ло ар­гу­мен­та: 2x минус 1 конец ар­гу­мен­та \ln левая круг­лая скоб­ка 4x минус a пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 2x минус 1 конец ар­гу­мен­та \ln левая круг­лая скоб­ка 5x плюс a пра­вая круг­лая скоб­ка .

имеет ровно один ко­рень на от­рез­ке [0; 1].

5.  
i

Най­ди­те все зна­че­ния а, при каж­дом из ко­то­рых урав­не­ние

 ко­рень из: на­ча­ло ар­гу­мен­та: 3x минус 2 конец ар­гу­мен­та \ln левая круг­лая скоб­ка x минус a пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 3x минус 2 конец ар­гу­мен­та \ln левая круг­лая скоб­ка 2x плюс a пра­вая круг­лая скоб­ка

имеет ровно один ко­рень на от­рез­ке [0; 1].

6.  
i

Най­ди­те все зна­че­ния а, при каж­дом из ко­то­рых урав­не­ние

 ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус 2x конец ар­гу­мен­та умно­жить на \ln левая круг­лая скоб­ка 25x в квад­ра­те минус a в квад­ра­те пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус 2x конец ар­гу­мен­та \ln левая круг­лая скоб­ка 5x плюс a пра­вая круг­лая скоб­ка

имеет ровно один ко­рень на от­рез­ке [0; 1].

7.  
i

Най­ди­те все зна­че­ния а, при каж­дом из ко­то­рых урав­не­ние

 ко­рень из: на­ча­ло ар­гу­мен­та: 2 минус 3x конец ар­гу­мен­та умно­жить на \ln левая круг­лая скоб­ка 16x в квад­ра­те минус a в квад­ра­те пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 2 минус 3x конец ар­гу­мен­та \ln левая круг­лая скоб­ка 4x плюс a пра­вая круг­лая скоб­ка

имеет ровно один ко­рень на от­рез­ке [0; 1].