А. Ларин: Тренировочный вариант № 122.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
Дано уравнение
а) Решите уравнение.
б) Укажите корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
Дана правильная шестиугольная призма ABCDEFA1B1C1D1E1F1. Через точки B, D1, F1 проведена плоскость β.
а) Докажите, что плоскость β пересекает ребро AA1 в такой точке M, что AM : A1M = 1 : 2.
б) Найдите угол, который образует плоскость β с плоскостью основания призмы, если известно, что AB = 1, AA1 = 3.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
В прямоугольном треугольнике ABC с катетами AC = 3 и BC = 2 проведены медиана CM и биссектриса CL.
а) Докажите, что площадь треугольника CML составляет одну десятую часть от площади треугольника ABC.
б) Найдите угол MCL.
На следующей странице вам будет предложено проверить их самостоятельно.
1 марта 2010 года Аркадий взял в банке кредит под 10% годовых. Схема выплаты кредита следующая: 1 марта каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%), затем Аркадий переводит в банк платеж. Весь долг Аркадий выплатил за 3 платежа, причем второй платеж оказался в два раза больше первого, а третий — в три раза больше первого. Сколько рублей взял в кредит Аркадий, если за три года он выплатил банку 2 395 800 рублей?
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения а, при каждом из которых уравнение имеет ровно три корня.
На следующей странице вам будет предложено проверить их самостоятельно.
а) На доске записаны три различных числа, образующие в этом порядке арифметическую прогрессию. Два числа поменяли местами. Могло ли оказаться так, что теперь эти числа стали образовывать геометрическую прогрессию?
б) На доске записаны четыре различных числа, образующие в этом порядке арифметическую прогрессию. Одно число с доски стерли. Могло ли оказаться так, что теперь три оставшихся числа стали образовывать геометрическую прогрессию?
в) На доске записаны четыре различных числа, образующие в этом порядке геометрическую прогрессию. Одно число с доски стерли. Могло ли оказаться так, что теперь три оставшихся числа стали образовывать арифметическую прогрессию?
На следующей странице вам будет предложено проверить их самостоятельно.