математика
Информатика
Русский язык
Английский язык
Немецкий язык
Французcкий язык
Испанский язык
Физика
Химия
Биология
География
Обществознание
Литература
История
сайты - меню - вход - новости




Задания
Версия для печати и копирования в MS Word
Задание 17 № 511220

1 марта 2010 года Аркадий взял в банке кредит под 10% годовых. Схема выплаты кредита следующая: 1 марта каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%), затем Аркадий переводит в банк платеж. Весь долг Аркадий выплатил за 3 платежа, причем второй платеж оказался в два раза больше первого, а третий – в три раза больше первого. Сколько рублей взял в кредит Аркадий, если за три года он выплатил банку 2 395 800 рублей?

Решение.

Если первый платеж банку Аркадия составил x рублей, то второй составит 2x рублей, а третий — 3x рублей, всего 6x рублей, что равно 2 395 800 , т. е. x = 2 395 800 : 6 = 399 300. Отсюда: 2x = 798 600, 3x=1 197 900.

Пусть в банке Аркадий взял в кредит S рублей.

Тогда его долг 01.03.2011 составил 1,1S рублей. После первого перечисления Аркадия долг снизился до (1,1S − 399 300) руб.

01.03.2012 банк начислил проценты на долг Аркадия. Долг Аркадия стал (1,1S − 399 300) · 1,1 = 1,21S − 439 230 (руб.)

Аркадий перевел в банк 798 600 руб. Долг снизился до 1,21S − 439230 − 798600 = 1,21S − 1237830 (руб.)

01.03.2013 банк начислил проценты на оставшийся долг Аркадия. Долг Аркадия стал (1,21S − 1237830) · 1,1 = 1,331S − 1 361 613 (руб.)

Аркадий перевел в банк 1 197 900 руб. Кредит погашен полностью, долга у Аркадия нет.

Значит, 1,331S − 1 361 613 − 1 197 900 = 0 ⇔ 1,331S = 2 559 513 ⇔ S = 1 923 000.

 

Ответ: 1 923 000 рублей.

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 122.