Вариант № 7337716

ЕГЭ по математике — 2015. Досрочная волна, Запад.

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Задания Д2 № 510078

Бегун пробежал 250 м за 36 секунд. Найдите среднюю скорость бегуна на дистанции. Ответ дайте в километрах в час.


Ответ:

2
Задания Д1 № 510079

На рисунке жирными точками показано суточное количество осадков, выпадавших в Томске с 8 по 24 января 2005 года. По горизонтали указываются числа месяца, по вертикали — количество осадков, выпавших в соответствующий день, в миллиметрах. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку, какого числа за данный период впервые выпало ровно 1,5 миллиметра осадков.


Ответ:

3
Задания Д3 № 510080

Телефонная компания предоставляет на выбор три тарифных плана.

 

Тарифный планАбонентская плата

(в месяц)

Плата за 1 минуту разговора
«Повременный»Нет0,3 руб.
«Комбинированный»160 руб. за 420 мин.0,2 руб. (сверх 420 мин. в месяц)
«Безлимитный»255 руб.Нет

 

Абонент предполагает, что общая длительность разговоров составит 700 минут в месяц, и исходя из этого выбирает наиболее дешёвый тарифный план. Сколько рублей должен будет заплатить абонент за месяц, если общая длительность разговоров действительно будет равна 700 минутам?


Ответ:

4
Задания Д4 № 510081

На клетчатой бумаге с размером клетки 1×1 изображён угол. Найдите синус этого угла.


Ответ:

5
Тип 3 № 510082

Если шахматист А. играет белыми фигурами, то он выигрывает у шахматиста Б. с вероятностью 0,5. Если А. играет чёрными, то А. выигрывает у Б. с вероятностью 0,32. Шахматисты А. и Б. играют две партии, причём во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.


Ответ:

6
Тип 5 № 510083

Найдите корень уравнения 36 в степени левая круглая скобка x минус 5 правая круглая скобка = дробь: числитель: 1, знаменатель: 6 конец дроби .


Ответ:

7
Тип 1 № 510084

Периметр прямоугольной трапеции, описанной около окружности, равен 32, её большая боковая сторона равна 9. Найдите радиус окружности.


Ответ:

8
Тип 7 № 510085

На рисунке изображён график функции y = f(x). На оси абсцисс отмечены восемь точек: x1, x2, x3, x4, x5, x6, x7, x8. В скольких из этих точек производная функции f(x) отрицательна?


Ответ:

9
Тип 2 № 510086

В правильной четырёхугольной пирамиде высота равна 2, боковое ребро равно 5. Найдите её объём.


Ответ:

10
Тип 6 № 510087

Найдите значение выражения  дробь: числитель: корень 15 степени из 5 умножить на 5 умножить на корень 10 степени из 5 , знаменатель: корень 6 степени из 5 конец дроби .


Ответ:

11
Тип 8 № 510088

Водолазный колокол, содержащий υ = 2 моля воздуха при давлении p1 = 1,75 атмосферы, медленно опускают на дно водоёма. При этом происходит изотермическое сжатие воздуха до конечного давления p2. Работа, совершаемая водой при сжатии воздуха, определяется выражением A= альфа v T логарифм по основанию 2 дробь: числитель: p_2, знаменатель: p_1 конец дроби , где  альфа =13,3 дробь: числитель: Дж, знаменатель: моль умножить на К конец дроби  — постоянная, T = 300 K — температура воздуха. Найдите, какое давление p2 (в атм) будет иметь воздух в колоколе, если при сжатии воздуха была совершена работа в 15 960 Дж.


Ответ:

12
Тип 2 № 510089

Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсечённой треугольной призмы равна 43. Найдите площадь боковой поверхности исходной призмы.


Ответ:

13
Тип 9 № 510090

Смешав 24-процентный и 67-процентный растворы кислоты и добавив 10 кг чистой воды, получили 41-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 45-процентный раствор кислоты. Сколько килограммов 24-процентного раствора использовали для получения смеси?


Ответ:

14
Тип 11 № 510091

Найдите наибольшее значение функции y=33x минус 30 синус x плюс 29 на отрезке  левая квадратная скобка минус дробь: числитель: знаменатель: p конец дроби i2; 0 правая квадратная скобка .


Ответ:

15
Тип 12 № 510092

а) Решите уравнение  синус 2x плюс корень из 2 синус x = 2 косинус x плюс корень из 2 .

б) Укажите корни этого уравнения, принадлежащие отрезку  левая квадратная скобка Пи ; дробь: числитель: 5 Пи , знаменатель: 2 конец дроби правая квадратная скобка .


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задания Д9 C2 № 510093

В кубе ABCDA1B1C1D1 все рёбра равны 4. На его ребре BB1 отмечена точка K так, что KB = 3. Через точки K и C1 проведена плоскость α, параллельная прямой BD1.

а) Докажите, что A1P: PB1 = 2:1, где P — точка пересечения плоскости α с ребром A1B1.

б) Найдите угол наклона плоскости α к плоскости грани BB1C1C.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Тип 14 № 510094

Решите неравенство  логарифм по основанию 5 в квадрате левая круглая скобка 25 минус x в квадрате правая круглая скобка минус 3 логарифм по основанию 5 левая круглая скобка 25 минус x в квадрате правая круглая скобка плюс 2\geqslant0.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Тип 13 № 510095

Дана равнобедренная трапеция ABCD с основаниями AD и BC. Окружность с центром O, построенная на боковой стороне AB как на диаметре, касается боковой стороны CD и второй раз пересекает большее основание AD в точке H , точка Q — середина CD.

а) Докажите, что четырёхугольник DQOH — параллелограмм.

б) Найдите AD, если ∠BAD = 75° и BC =1.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Тип 15 № 510096

Григорий является владельцем двух заводов в разных городах. На заводах производятся абсолютно одинаковые товары, но на заводе, расположенном во втором городе, используется более совершенное оборудование. В результате, если рабочие на заводе, расположенном в первом городе, трудятся суммарно t2 часов в неделю, то за эту неделю они производят 3t единиц товара; если рабочие на заводе, расположенном во втором городе, трудятся суммарно t2 часов в неделю, то за эту неделю они производят 4t единиц товара.

За каждый час работы (на каждом из заводов) Григорий платит рабочему 500 рублей.

Григорий готов выделять 5 000 000 рублей в неделю на оплату труда рабочих. Какое наибольшее количество единиц товара можно произвести за неделю на этих двух заводах?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

20
Тип 17 № 510097

Найдите все значения a, при каждом из которых система уравнений

 система выражений дробь: числитель: левая круглая скобка y в квадрате минус xy плюс 3x минус y минус 6 правая круглая скобка корень из x плюс 2, знаменатель: корень из 6 минус x конец дроби =0,x плюс y минус a=0. конец системы .

имеет ровно два различных решения.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

21
Тип 18 № 510098

На доске написали несколько не обязательно различных двузначных натуральных чисел без нулей в десятичной записи. Сумма этих чисел оказалась равной 363. Затем в каждом числе поменяли местами первую и вторую цифры (например, число 17 заменили на число 71).

а) Приведите пример исходных чисел, для которых сумма получившихся чисел ровно в 4 раза больше, чем сумма исходных чисел.

б) Могла ли сумма получившихся чисел быть ровно в 2 раза больше, чем сумма исходных чисел?

в) Найдите наибольшее возможное значение суммы получившихся чисел.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить тестирование, свериться с ответами, увидеть решения.