Вариант № 5410469

А. Ларин: Тренировочный вариант № 80.

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип Д8 C1 № 505832
i

а)  Ре­ши­те урав­не­ние  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 2 синус x пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ко­си­нус x пра­вая круг­лая скоб­ка = минус 1.

б)  Най­ди­те все корни на про­ме­жут­ке  левая квад­рат­ная скоб­ка 0, дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Тип Д10 C2 № 505833
i

В тре­уголь­ной пи­ра­ми­де ABCD угол между гра­ня­ми ABC и ACD равен  дробь: чис­ли­тель: зна­ме­на­тель: p конец дроби i3, плос­кий угол BAC равен  арк­ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка , а рёбра AC и AD пер­пен­ди­ку­ляр­ны. Найти длину ребра AD, если AB  =  5, BD= ко­рень из: на­ча­ло ар­гу­мен­та: 29 конец ар­гу­мен­та .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Тип Д13 C3 № 505834
i

Ре­ши­те си­сте­му не­ра­венств  си­сте­ма вы­ра­же­ний  новая стро­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 1 минус x в квад­ра­те конец дроби пра­вая круг­лая скоб­ка 2 мень­ше ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2x в квад­ра­те пра­вая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби , новая стро­ка дробь: чис­ли­тель: 3 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка 1 минус x пра­вая круг­лая скоб­ка плюс 1, зна­ме­на­тель: 2 в сте­пе­ни x минус 1 конец дроби боль­ше или равно дробь: чис­ли­тель: 1, зна­ме­на­тель: 1 минус 2 в сте­пе­ни левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка конец дроби . конец си­сте­мы


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Тип Д15 C4 № 505835
i

В ост­ро­уголь­ном тре­уголь­ни­ке ABC про­ве­де­ны вы­со­ты AD и CE, H  — точка пе­ре­се­че­ния высот.

а)  До­ка­жи­те, что точки A, E, D и С лежат на одной окруж­но­сти.

б)  Из­вест­но, что ра­ди­ус этой окруж­но­сти равен 2, а ра­ди­ус опи­сан­ной окруж­но­сти тре­уголь­ни­ка ABC равен 4. Най­ди­те угол ABC.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Тип Д17 C6 № 505836
i

Най­ди­те все зна­че­ния па­ра­мет­ра a, при ко­то­рых урав­не­ние  ко­си­нус 2x плюс 2 синус в квад­ра­те левая круг­лая скоб­ка x плюс a пра­вая круг­лая скоб­ка плюс 2 минус синус a=0 имеет корни, при­над­ле­жа­щие про­ме­жут­ку  Пи мень­ше или равно x мень­ше или равно 2 Пи .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Тип Д19 C7 № 505837
i

Су­ще­ству­ют ли

а)  шесть,

б)  1000 таких раз­лич­ных на­ту­раль­ных чисел, что для любых двух a и b из них сумма a + b де­лит­ся на раз­ность a − b?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.