А. Ларин: Тренировочный вариант № 64.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Найдите все корни на промежутке
На следующей странице вам будет предложено проверить их самостоятельно.
В основании пирамиды SABCD лежит прямоугольник ABCD со сторонами AB = 6 и BC = 9. Высота пирамиды проходит через точку O пересечения диагоналей AC и BD основания и равна Точки E и F лежат на ребрах AB и AD соответственно, причем AE = 4, AF = 6. Найти площадь многогранника, полученного при пересечении пирамиды с плоскостью, проходящей через точки E и F и параллельной ребру AS.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите систему неравенств
На следующей странице вам будет предложено проверить их самостоятельно.
В треугольнике АВС AB = BC = 10, AC = 12. Биссектриса угла ВАС пересекает сторону BC в точке D и описанную около треугольника окружность в точке P.
а) Докажите, что ∠ABP = ∠BDP.
б) Найдите отношение площадей треугольников ADB и BDP.
На следующей странице вам будет предложено проверить их самостоятельно.
Найти все значения параметра p, для которых неравенство выполняется хотя бы для одного числа x такого, что | x | < 0,01.
На следующей странице вам будет предложено проверить их самостоятельно.
Целые числа от 1 до n записаны в строчку. Под ними записаны те же числа в другом порядке. Может ли случиться так, что сумма каждого числа и записанного под ним есть точный квадрат
а) при n = 9,
б) при n = 11,
в) при n = 1996.
На следующей странице вам будет предложено проверить их самостоятельно.