Заголовок: ЕГЭ по математике 02.06.2022. Основная волна. Санкт-Петербург. Вариант 991
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — математика профильная
Вариант № 47368696

ЕГЭ по математике 02.06.2022. Основная волна. Санкт-Петербург. Вариант 991

1.  
i

а)  Ре­ши­те урав­не­ние  синус 2x минус 2 синус x плюс 2 ко­си­нус x минус 2=0.

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка 3 Пи ; дробь: чис­ли­тель: 9 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

2.  
i

Точка O  — точка пе­ре­се­че­ния диа­го­на­лей грани CDD1C1 куба ABCDA1B1C1D1. Плос­кость  DA1C1 пе­ре­се­ка­ет диа­го­наль  BD1 в точке  F.

а)  До­ка­жи­те, что BF:FD_1=A_1F:FO.

б)  Точки M и N  — се­ре­ди­ны ребер AB и AA1, со­от­вет­ствен­но. Най­ди­те угол между пря­мой  MN и плос­ко­стью  DA1C1.

3.  
i

Ре­ши­те не­ра­вен­ство 2 в сте­пе­ни x минус дробь: чис­ли­тель: 240, зна­ме­на­тель: 2 в сте­пе­ни x минус 1 конец дроби боль­ше или равно 0.

4.  
i

В июле 2026 года пла­ни­ру­ет­ся взять кре­дит на три года в раз­ме­ре 500 тыс. руб­лей. Усло­вия его воз­вра­та та­ко­вы:

—  каж­дый ян­варь долг будет воз­рас­тать на 20% по срав­не­нию с кон­цом преды­ду­ще­го года;

—  с фев­ра­ля по июнь каж­до­го года не­об­хо­ди­мо вы­пла­тить одним пла­те­жам часть долга;

—  пла­те­жи в 2027 и 2028 годах долж­ны быть 200 тыс. руб.;

—  к июлю 2029 года долг дол­жен быть вы­пла­чен пол­но­стью.

Сколь­ко руб­лей со­ста­вит платёж в 2029 году?

5.  
i

В тре­уголь­ни­ке ABC точки M и N  — се­ре­ди­ны сто­рон AB и BC со­от­вет­ствен­но. Из­вест­но, что около че­ты­рех­уголь­ни­ка AMNC можно опи­сать окруж­ность.

а)  До­ка­жи­те, что тре­уголь­ник ABC  — рав­но­бед­рен­ный.

б)  На сто­ро­не от­ме­че­на точка F, такая что \angle AFB=135 гра­ду­сов. От­ре­зок BF пе­ре­се­ка­ет от­ре­зок MN в точке E. Най­ди­те ра­ди­ус окруж­но­сти, опи­сан­ной около четырёхуголь­ни­ка AMNC, если \angle ABC =120 гра­ду­сов и EF=6 ко­рень из 2 .

6.  
i

Най­ди­те все зна­че­ния a, при каж­дом из ко­то­рых урав­не­ние

a в квад­ра­те минус x в квад­ра­те плюс 2|x| минус 1=0

имеет ровно два раз­лич­ных ре­ше­ния.

7.  
i

На доске на­пи­са­но N раз­лич­ных на­ту­раль­ных чисел, каж­дое из ко­то­рых не пре­вос­хо­дит 27. Для каж­дых двух на­пи­сан­ных чисел a и b таких, что a мень­ше b ни одно из на­пи­сан­ных чисел не де­лит­ся на b – a и ни одно из на­пи­сан­ных чисел не яв­ля­ет­ся де­ли­те­лем числа b – a.

а)  Могли ли на доске быть на­пи­са­ны какие-то два числа из чисел 4, 5, 6?

б)  Среди на­пи­сан­ных на доске чисел есть 5. Может ли N быть рав­ным 7?

в)  Най­ди­те наи­боль­шее зна­че­ние N.